61
views
0
recommends
+1 Recommend
1 collections
    0
    shares

         An official journal of the Society for Reproduction and Fertility. Learn more

      • Record: found
      • Abstract: found
      • Article: found

      Hypoxia inducible factors regulate pluripotency and proliferation in human embryonic stem cells cultured at reduced oxygen tensions

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Human embryonic stem (hES) cells are routinely cultured under atmospheric, 20% oxygen tensions but are derived from embryos which reside in a 3–5% oxygen (hypoxic) environment. Maintenance of oxygen homeostasis is critical to ensure sufficient levels for oxygen-dependent processes. This study investigates the importance of specific hypoxia inducible factors (HIFs) in regulating the hypoxic responses of hES cells. We report that culture at 20% oxygen decreased hES cell proliferation and resulted in a significantly reduced expression of SOX2, NANOG and POU5F1 ( OCT4) mRNA as well as POU5F1 protein compared with hypoxic conditions. HIF1A protein was not expressed at 20% oxygen and displayed only a transient, nuclear localisation at 5% oxygen. HIF2A (EPAS1) and HIF3A displayed a cytoplasmic localisation during initial hypoxic culture but translocated to the nucleus following long-term culture at 5% oxygen and were significantly upregulated compared with cells cultured at 20% oxygen. Silencing of HIF2A resulted in a significant decrease in both hES cell proliferation and POU5F1, SOX2 and NANOG protein expression while the early differentiation marker, SSEA1, was concomitantly increased. HIF3A upregulated HIF2A and prevented HIF1A expression with the knockdown of HIF3A resulting in the reappearance of HIF1A protein. In summary, these data demonstrate that a low oxygen tension is preferential for the maintenance of a highly proliferative, pluripotent population of hES cells. While HIF3A was found to regulate the expression of both HIF1A and HIF2A, it is HIF2A which regulates hES cell pluripotency as well as proliferation under hypoxic conditions.

          Related collections

          Most cited references38

          • Record: found
          • Abstract: found
          • Article: not found

          HIFalpha targeted for VHL-mediated destruction by proline hydroxylation: implications for O2 sensing.

          HIF (hypoxia-inducible factor) is a transcription factor that plays a pivotal role in cellular adaptation to changes in oxygen availability. In the presence of oxygen, HIF is targeted for destruction by an E3 ubiquitin ligase containing the von Hippel-Lindau tumor suppressor protein (pVHL). We found that human pVHL binds to a short HIF-derived peptide when a conserved proline residue at the core of this peptide is hydroxylated. Because proline hydroxylation requires molecular oxygen and Fe(2+), this protein modification may play a key role in mammalian oxygen sensing.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            A nuclear factor induced by hypoxia via de novo protein synthesis binds to the human erythropoietin gene enhancer at a site required for transcriptional activation.

            We have identified a 50-nucleotide enhancer from the human erythropoietin gene 3'-flanking sequence which can mediate a sevenfold transcriptional induction in response to hypoxia when cloned 3' to a simian virus 40 promoter-chloramphenicol acetyltransferase reporter gene and transiently expressed in Hep3B cells. Nucleotides (nt) 1 to 33 of this sequence mediate sevenfold induction of reporter gene expression when present in two tandem copies compared with threefold induction when present in a single copy, suggesting that nt 34 to 50 bind a factor which amplifies the induction signal. DNase I footprinting demonstrated binding of a constitutive nuclear factor to nt 26 to 48. Mutagenesis studies revealed that nt 4 to 12 and 19 to 23 are essential for induction, as substitutions at either site eliminated hypoxia-induced expression. Electrophoretic mobility shift assays identified a nuclear factor which bound to a probe spanning nt 1 to 18 but not to a probe containing a mutation which eliminated enhancer function. Factor binding was induced by hypoxia, and its induction was sensitive to cycloheximide treatment. We have thus defined a functionally tripartite, 50-nt hypoxia-inducible enhancer which binds several nuclear factors, one of which is induced by hypoxia via de novo protein synthesis.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Hypoxia-inducible factor (HIF-1)alpha: its protein stability and biological functions.

              Hypoxia-inducible factor (HIF-1) is an oxygen-dependent transcriptional activator, which plays crucial roles in the angiogenesis of tumors and mammalian development. HIF-1 consists of a constitutively expressed HIF-1beta subunit and one of three subunits (HIF-1alpha, HIF-2alpha or HIF-3alpha). The stability and activity of HIF-1alpha are regulated by various post-translational modifications, hydroxylation, acetylation, and phosphorylation. Therefore, HIF-1alpha interacts with several protein factors including PHD, pVHL, ARD-1, and p300/CBP. Under normoxia, the HIF-1alpha subunit is rapidly degraded via the von Hippel-Lindau tumor suppressor gene product (pVHL)- mediated ubiquitin-proteasome pathway. The association of pVHL and HIF-1alpha under normoxic conditions is triggered by the hydroxylation of prolines and the acetylation of lysine within a polypeptide segment known as the oxygen-dependent degradation (ODD) domain. On the contrary, in the hypoxia condition, HIF-1alpha subunit becomes stable and interacts with coactivators such as p300/CBP to modulate its transcriptional activity. Eventually, HIF-1 acts as a master regulator of numerous hypoxia-inducible genes under hypoxic conditions. The target genes of HIF-1 are especially related to angiogenesis, cell proliferation/survival, and glucose/iron metabolism. Moreover, it was reported that the activation of HIF-1alpha is closely associated with a variety of tumors and oncogenic pathways. Hence, the blocking of HIF-1a itself or HIF-1alpha interacting proteins inhibit tumor growth. Based on these findings, HIF-1 can be a prime target for anticancer therapies. This review summarizes the molecular mechanism of HIF-1a stability, the biological functions of HIF-1 and its potential applications of cancer therapies.
                Bookmark

                Author and article information

                Journal
                Reproduction
                REPRO
                Reproduction (Cambridge, England)
                BioScientifica (Bristol )
                1470-1626
                1741-7899
                January 2010
                : 139
                : 1
                : 85-97
                Affiliations
                [1 ]simpleCentre for Human Development Stem Cells and Regeneration simpleSouthampton General Hospital, University of Southampton Tremona Road, Duthie Building (MP 808), Southampton, SO16 6YDUK
                [2 ]simpleHuman Genetics Division simpleSouthampton General Hospital Duthie Building (MP 808), Tremona Road, Southampton, SO16 6YDUK
                [3 ]simpleDevelopmental Origins of Health & Disease Division, School of Medicine, University of Southampton simpleSouthampton General Hospital Duthie Building (MP 808), Tremona Road, Southampton, SO16 6YDUK
                Author notes
                Correspondence should be addressed to F D Houghton; Email: f.d.houghton@ 123456soton.ac.uk
                Article
                REP090300
                10.1530/REP-09-0300
                2791494
                19755485
                d8a66ae3-9d9f-45dd-91df-10120013ee85
                © 2010 Society for Reproduction and Fertility

                This is an Open Access article distributed under the terms of the Society for Reproduction and Fertility's Re-use Licence which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is roperly cited.

                History
                : 16 July 2009
                : 8 September 2009
                : 18 August 2009
                : 14 September 2009
                Funding
                Funded by: Wellcome Trust
                Award ID: WT066492MA, G0701153, WT074320MA
                Categories
                Research

                Obstetrics & Gynecology
                Obstetrics & Gynecology

                Comments

                Comment on this article