3
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Gut Microbiome Succession in Chinese Mitten Crab Eriocheir sinensis During Seawater–Freshwater Migration

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Biological migration is usually associated with disturbances and environmental changes that are key drivers in determining the diversity, community compositions, and function of gut microbiome. However, little is known about how gut microbiome is affected by disturbance such as salinity changes during migration from seawater to freshwater. Here, we tracked the gut microbiome succession of Chinese mitten crabs ( Eriocheir sinensis) during their migrations from seawater to freshwater and afterward using 16S rDNA sequencing for 127 days, and explored the temporal patterns in microbial diversity and the underlying environmental factors. The species richness of gut microbiome showed a hump-shaped trend over time during seawater–freshwater migration. The community dissimilarities of gut microbiome increased significantly with day change. The turnover rate of gut microbiome community was higher during seawater–freshwater transition (1–5 days) than that in later freshwater conditions. Salinity was the major factor leading to the alpha diversity and community dissimilarity of gut microbiome during seawater–freshwater transition, while the host selection showed dominant effects during freshwater stage. The transitivity, connectivity, and average clustering coefficient of gut microbial co-occurrence networks showed decreased trends, while modularity increased during seawater–freshwater migration. For metabolic pathways, “Amino Acid Metabolism” and “Lipid Metabolism” were higher during seawater–freshwater transition than in freshwater. This study advances our mechanistic understanding of the assembly and succession of gut microbiota, which provides new insights into the gut ecology of other aquatic animals.

          Related collections

          Most cited references51

          • Record: found
          • Abstract: found
          • Article: not found

          Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy.

          The Ribosomal Database Project (RDP) Classifier, a naïve Bayesian classifier, can rapidly and accurately classify bacterial 16S rRNA sequences into the new higher-order taxonomy proposed in Bergey's Taxonomic Outline of the Prokaryotes (2nd ed., release 5.0, Springer-Verlag, New York, NY, 2004). It provides taxonomic assignments from domain to genus, with confidence estimates for each assignment. The majority of classifications (98%) were of high estimated confidence (> or = 95%) and high accuracy (98%). In addition to being tested with the corpus of 5,014 type strain sequences from Bergey's outline, the RDP Classifier was tested with a corpus of 23,095 rRNA sequences as assigned by the NCBI into their alternative higher-order taxonomy. The results from leave-one-out testing on both corpora show that the overall accuracies at all levels of confidence for near-full-length and 400-base segments were 89% or above down to the genus level, and the majority of the classification errors appear to be due to anomalies in the current taxonomies. For shorter rRNA segments, such as those that might be generated by pyrosequencing, the error rate varied greatly over the length of the 16S rRNA gene, with segments around the V2 and V4 variable regions giving the lowest error rates. The RDP Classifier is suitable both for the analysis of single rRNA sequences and for the analysis of libraries of thousands of sequences. Another related tool, RDP Library Compare, was developed to facilitate microbial-community comparison based on 16S rRNA gene sequence libraries. It combines the RDP Classifier with a statistical test to flag taxa differentially represented between samples. The RDP Classifier and RDP Library Compare are available online at http://rdp.cme.msu.edu/.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Diversity in tropical rain forests and coral reefs.

            The commonly observed high diversity of trees in tropical rain forests and corals on tropical reefs is a nonequilibrium state which, if not disturbed further, will progress toward a low-diversity equilibrium community. This may not happen if gradual changes in climate favor different species. If equilibrium is reached, a lesser degree of diversity may be sustained by niche diversification or by a compensatory mortality that favors inferior competitors. However, tropical forests and reefs are subject to severe disturbances often enough that equilibrium may never be attained.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              STAMP: statistical analysis of taxonomic and functional profiles.

              STAMP is a graphical software package that provides statistical hypothesis tests and exploratory plots for analysing taxonomic and functional profiles. It supports tests for comparing pairs of samples or samples organized into two or more treatment groups. Effect sizes and confidence intervals are provided to allow critical assessment of the biological relevancy of test results. A user-friendly graphical interface permits easy exploration of statistical results and generation of publication-quality plots. STAMP is licensed under the GNU GPL. Python source code and binaries are available from our website at: http://kiwi.cs.dal.ca/Software/STAMP. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Microbiol
                Front Microbiol
                Front. Microbiol.
                Frontiers in Microbiology
                Frontiers Media S.A.
                1664-302X
                30 March 2022
                2022
                : 13
                : 858508
                Affiliations
                [1] 1Department of Marine Biology, College of Oceanography, Hohai University , Nanjing, China
                [2] 2State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences , Nanjing, China
                [3] 3Freshwater Fisheries Research Institute of Jiangsu Province , Nanjing, China
                Author notes

                Edited by: Xuemei Li, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences (CAFS), China

                Reviewed by: Huan Li, Lanzhou University, China; Yu Shi, Henan University, China

                *Correspondence: Tianheng Gao, gaotianheng928@ 123456hhu.edu.cn

                These authors have contributed equally to this work

                This article was submitted to Microbial Symbioses, a section of the journal Frontiers in Microbiology

                Article
                10.3389/fmicb.2022.858508
                9005979
                35432227
                d8d54410-9bce-4d71-b2f2-d6a9c1368d16
                Copyright © 2022 Shao, Zhao, Li, Li, Zhang, Li, Xu, Wang and Gao.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 20 January 2022
                : 15 February 2022
                Page count
                Figures: 6, Tables: 0, Equations: 0, References: 51, Pages: 12, Words: 7191
                Categories
                Microbiology
                Original Research

                Microbiology & Virology
                gut microbiome succession during migration gut microbiome,chinese mitten crab,salinity,migration,seawater–freshwater transition

                Comments

                Comment on this article