15
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      The nucleus raphe magnus OFF-cells are involved in diffuse noxious inhibitory controls.

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Diffuse noxious inhibitory controls (DNIC) are very powerful long-lasting descending inhibitory controls which are pivotal in modulating the activity of spinal and trigeminal nociceptive neurons. DNIC are subserved by a loop involving supraspinal structures such as the lateral parabrachial nucleus and the subnucleus reticularis dorsalis. Surprisingly, though, whether the nucleus raphe magnus (NRM), another supraspinal area which is long known to be important in pain modulation, is involved in DNIC is still a matter of discussion. Here, we reassessed the role of the NRM neurons in DNIC by electrophysiologically recording from wide dynamic range (WDR) neurons in the trigeminal subnucleus oralis and pharmacologically manipulating the NRM OFF- and ON-cells. In control conditions, C-fiber-evoked responses in trigeminal WDR neurons are inhibited by a conditioning noxious heat stimulation applied to the hindpaw. We show that inactivating the NRM by microinjecting the GABAA receptor agonist, muscimol, both facilitates C-fiber-evoked responses of trigeminal WDR neurons and strongly attenuates their inhibition by heat applied to the hindpaw. Interestingly, selective blockade of ON-cells by microinjecting the broad-spectrum excitatory amino acid antagonist, kynurenate, into the NRM neither affects C-fiber-evoked responses nor attenuates DNIC of trigeminal WDR neurons. These results indicate that the NRM tonically inhibits trigeminal nociceptive inputs and is involved in the neuronal network underlying DNIC. Moreover, within NRM, OFF-cells might be more specifically involved in both the tonic and phasic descending inhibitory controls of trigeminal nociception.

          Related collections

          Author and article information

          Journal
          Exp Neurol
          Experimental neurology
          Elsevier BV
          1090-2430
          0014-4886
          Jun 2014
          : 256
          Affiliations
          [1 ] Clermont Université, Université d'Auvergne, NEURO-DOL, BP 10448, F-63000 Clermont-Ferrand, France; INSERM, U1107, F-63001 Clermont-Ferrand, France; Faculté de médecine dentaire, Monastir, Tunisie.
          [2 ] Clermont Université, Université d'Auvergne, NEURO-DOL, BP 10448, F-63000 Clermont-Ferrand, France; INSERM, U1107, F-63001 Clermont-Ferrand, France.
          [3 ] Clermont Université, Université d'Auvergne, NEURO-DOL, BP 10448, F-63000 Clermont-Ferrand, France; INSERM, U1107, F-63001 Clermont-Ferrand, France. Electronic address: radhouane.dallel@udamail.fr.
          Article
          S0014-4886(14)00083-1
          10.1016/j.expneurol.2014.03.006
          24681000
          d8de1b5c-d0e5-45a4-9703-26dbed49ef88
          Copyright © 2014 Elsevier Inc. All rights reserved.
          History

          Descending inhibitory control,Nociception,OFF-cell,ON-cell,Orofacial,Pain,Rostral ventromedial medulla (RVM),Trigeminal

          Comments

          Comment on this article