3
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Role of nanostructured materials in hard tissue engineering

      , , ,
      Advances in Colloid and Interface Science
      Elsevier BV

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references219

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Methods for in vitro evaluating antimicrobial activity: A review ☆

          In recent years, there has been a growing interest in researching and developing new antimicrobial agents from various sources to combat microbial resistance. Therefore, a greater attention has been paid to antimicrobial activity screening and evaluating methods. Several bioassays such as disk-diffusion, well diffusion and broth or agar dilution are well known and commonly used, but others such as flow cytofluorometric and bioluminescent methods are not widely used because they require specified equipment and further evaluation for reproducibility and standardization, even if they can provide rapid results of the antimicrobial agent's effects and a better understanding of their impact on the viability and cell damage inflicted to the tested microorganism. In this review article, an exhaustive list of in vitro antimicrobial susceptibility testing methods and detailed information on their advantages and limitations are reported.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Porosity of 3D biomaterial scaffolds and osteogenesis.

            Porosity and pore size of biomaterial scaffolds play a critical role in bone formation in vitro and in vivo. This review explores the state of knowledge regarding the relationship between porosity and pore size of biomaterials used for bone regeneration. The effect of these morphological features on osteogenesis in vitro and in vivo, as well as relationships to mechanical properties of the scaffolds, are addressed. In vitro, lower porosity stimulates osteogenesis by suppressing cell proliferation and forcing cell aggregation. In contrast, in vivo, higher porosity and pore size result in greater bone ingrowth, a conclusion that is supported by the absence of reports that show enhanced osteogenic outcomes for scaffolds with low void volumes. However, this trend results in diminished mechanical properties, thereby setting an upper functional limit for pore size and porosity. Thus, a balance must be reached depending on the repair, rate of remodeling and rate of degradation of the scaffold material. Based on early studies, the minimum requirement for pore size is considered to be approximately 100 microm due to cell size, migration requirements and transport. However, pore sizes >300 microm are recommended, due to enhanced new bone formation and the formation of capillaries. Because of vascularization, pore size has been shown to affect the progression of osteogenesis. Small pores favored hypoxic conditions and induced osteochondral formation before osteogenesis, while large pores, that are well-vascularized, lead to direct osteogenesis (without preceding cartilage formation). Gradients in pore sizes are recommended for future studies focused on the formation of multiple tissues and tissue interfaces. New fabrication techniques, such as solid-free form fabrication, can potentially be used to generate scaffolds with morphological and mechanical properties more selectively designed to meet the specificity of bone-repair needs.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Ti based biomaterials, the ultimate choice for orthopaedic implants – A review

                Bookmark

                Author and article information

                Journal
                Advances in Colloid and Interface Science
                Advances in Colloid and Interface Science
                Elsevier BV
                00018686
                June 2022
                June 2022
                : 304
                : 102682
                Article
                10.1016/j.cis.2022.102682
                35489142
                d93a77ca-434c-48b1-80c9-7be5592d0564
                © 2022

                https://www.elsevier.com/tdm/userlicense/1.0/

                History

                Comments

                Comment on this article