7
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Role of white light in reversing UV-B-mediated effects in the N2-fixing cyanobacterium Anabaena BT2.

      Journal of photochemistry and photobiology. B, Biology
      Anabaena, growth & development, physiology, radiation effects, Carbon Dioxide, metabolism, Light, Nitrogen Fixation, Photosynthesis, Ultraviolet Rays

      Read this article at

      ScienceOpenPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The effects of various irradiances of artificial UV-B (280-315 nm) in the presence or absence of visible light (photosynthetically active radiation) on growth, survival, 14CO2 uptake and ribulose 1,5-bisphosphate carboxylase (RuBISCO) activity were studied in the N2-fixing cyanobacterium Anabaena BT2. We tested the hypothesis whether or not visible radiation offers any protection against UV-B-induced deleterious effects on growth and photosynthesis in Anabaena BT2. Attempts were also made to determine the irradiances of UV-B where inhibitory effects could be mitigated by simultaneous irradiation with visible light. Exposure of cultures to 0.2 W m(-2) or higher irradiance of UV-B caused inhibition of growth and survival and growth ceased above 1.0 W m(-2). 14CO uptake and RuBISCO activity were found to be more sensitive to UV-B and around 60% reduction in 14CO2 uptake and RuBISCO activity occurred after exposure of cultures to 0.4 W m(-2) for 1 h. However, growth, 14CO2 uptake and RuBISCO activity were nearly normal when UV-B (0.4 W m(-2)) and visible light (14.4 W m(-2)) were given simultaneously. Blue radiation (450 nm) was found to be the most effective in photoreactivation against UV-B, better than UV-A or any other light wavelength band. Our results demonstrate that the studied cyanobacterium possesses active photoreactivation mechanism(s) against UV-B-mediated damage which in turn probably allow survival under natural conditions in spite of being continuously exposed to the UV-B component present in the solar radiation. Continued growth of many algae and cyanobacteria in the presence of intense solar UV-B radiation under natural conditions seems to be due to the active role of photoreactivation.

          Related collections

          Author and article information

          Comments

          Comment on this article