10
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      A novel self-healing triple physical cross-linked hydrogel for antibacterial dressing

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Structure diagram and main properties of PAAMV hydrogel.

          Abstract

          The poor mechanical properties of wound dressings have always been a challenge in their application as wound protective barriers. In particular, when the hydrogel dressing absorbs the tissue fluid, the mechanical properties of the hydrogel will decrease greatly due to the swelling effect. In this study, an original antibacterial hydrogel dressing was prepared by a one-step process with acrylic acid, 1-vinyl-3-butylimidazolium, COOH-modified gum arabic, and aluminium chloride. The mechanical properties of this hydrogel were improved after water absorption due to hydrophobic interactions, so the hydrogel dressing could maintain good mechanical properties after absorption of the tissue fluid. Furthermore, 1-vinyl-3-butylimidazolium as an ionic liquid was introduced into the polymer backbone of hydrogels via covalent bonds and could promote the self-healing of hydrogels by facilitating the migration of aluminum ions with charge. The obtained hydrogels showed good self-healing properties, with a strain self-healing rate of 98.2% and a stress self-healing rate of 92.3%. In addition, this hydrogel exhibited excellent antibacterial activity against E. coli, S. aureus, and C. albicans. The results of the study on rat wound closure indicated that this hydrogel effectively accelerated the healing of a full-thickness skin defect. Therefore, this novel hydrogel has a broad application prospect in the field of wound dressing.

          Related collections

          Most cited references43

          • Record: found
          • Abstract: found
          • Article: not found

          Hydrogels in regenerative medicine.

          Hydrogels, due to their unique biocompatibility, flexible methods of synthesis, range of constituents, and desirable physical characteristics, have been the material of choice for many applications in regenerative medicine. They can serve as scaffolds that provide structural integrity to tissue constructs, control drug and protein delivery to tissues and cultures, and serve as adhesives or barriers between tissue and material surfaces. In this work, the properties of hydrogels that are important for tissue engineering applications and the inherent material design constraints and challenges are discussed. Recent research involving several different hydrogels polymerized from a variety of synthetic and natural monomers using typical and novel synthetic methods are highlighted. Finally, special attention is given to the microfabrication techniques that are currently resulting in important advances in the field.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Silver nanoparticles as a new generation of antimicrobials.

            Silver has been in use since time immemorial in the form of metallic silver, silver nitrate, silver sulfadiazine for the treatment of burns, wounds and several bacterial infections. But due to the emergence of several antibiotics the use of these silver compounds has been declined remarkably. Nanotechnology is gaining tremendous impetus in the present century due to its capability of modulating metals into their nanosize, which drastically changes the chemical, physical and optical properties of metals. Metallic silver in the form of silver nanoparticles has made a remarkable comeback as a potential antimicrobial agent. The use of silver nanoparticles is also important, as several pathogenic bacteria have developed resistance against various antibiotics. Hence, silver nanoparticles have emerged up with diverse medical applications ranging from silver based dressings, silver coated medicinal devices, such as nanogels, nanolotions, etc.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Antibacterial adhesive injectable hydrogels with rapid self-healing, extensibility and compressibility as wound dressing for joints skin wound healing

              Designing wound dressing materials with outstanding therapeutic effects, self-healing, adhesiveness and suitable mechanical property has great practical significance in healthcare, especially for joints skin wound healing. Here, we designed a kind of self-healing injectable micelle/hydrogel composites with multi-functions as wound dressing for joint skin damage. By combining the dynamic Schiff base and copolymer micelle cross-linking in one system, a series of hydrogels were prepared by mixing quaternized chitosan (QCS) and benzaldehyde-terminated Pluronic®F127 (PF127-CHO) under physiological conditions. The inherent antibacterial property, pH-dependent biodegradation and release behavior were investigated to confirm multi-functions of wound dressing. The hydrogel dressings showed suitable stretchable and compressive property, comparable modulus with human skin, good adhesiveness and fast self-healing ability to bear deformation. The hydrogels exhibited efficient hemostatic performance and biocompatibility. Moreover, the curcumin loaded hydrogel showed good antioxidant ability and pH responsive release profiles. In vivo experiments indicated that curcumin loaded hydrogels significantly accelerated wound healing rate with higher granulation tissue thickness and collagen disposition and upregulated vascular endothelial growth factor (VEGF) in a full-thickness skin defect model. Taken together, the antibacterial adhesive hydrogels with self-healing and good mechanical property offer significant promise as dressing materials for joints skin wound healing.
                Bookmark

                Author and article information

                Contributors
                Journal
                JMCBDV
                Journal of Materials Chemistry B
                J. Mater. Chem. B
                Royal Society of Chemistry (RSC)
                2050-750X
                2050-7518
                September 01 2021
                2021
                : 9
                : 34
                : 6844-6855
                Affiliations
                [1 ]Instrumental Analysis Center, Dalian Polytechnic University, 1# Qinggongyuan Road, Dalian 116034, China
                [2 ]School of Light Industry and Chemical Engineering, Dalian Polytechnic University, 1# Qinggongyuan Road, Dalian 116034, China
                [3 ]School of Biological Engineering, Dalian Polytechnic University, 1# Qinggongyuan Road, Dalian 116034, China
                Article
                10.1039/D1TB01257F
                34612333
                d961c490-6744-4aec-bbc5-1bc3c4d4639b
                © 2021

                http://rsc.li/journals-terms-of-use

                History

                Comments

                Comment on this article