Inviting an author to review:
Find an author and click ‘Invite to review selected article’ near their name.
Search for authorsSearch for similar articles
68
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Screening for BRCA1, BRCA2, CHEK2, PALB2, BRIP1, RAD50, and CDH1 mutations in high-risk Finnish BRCA1/2-founder mutation-negative breast and/or ovarian cancer individuals

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Introduction

          Two major high-penetrance breast cancer genes, BRCA1 and BRCA2, are responsible for approximately 20% of hereditary breast cancer (HBC) cases in Finland. Additionally, rare mutations in several other genes that interact with BRCA1 and BRCA2 increase the risk of HBC. Still, a majority of HBC cases remain unexplained which is challenging for genetic counseling. We aimed to analyze additional mutations in HBC-associated genes and to define the sensitivity of our current BRCA1/2 mutation analysis protocol used in genetic counseling.

          Methods

          Eighty-two well-characterized, high-risk hereditary breast and/or ovarian cancer (HBOC) BRCA1/ 2-founder mutation-negative Finnish individuals, were screened for germline alterations in seven breast cancer susceptibility genes, BRCA1, BRCA2, CHEK2, PALB2, BRIP1, RAD50, and CDH1. BRCA1/ 2 were analyzed by multiplex ligation-dependent probe amplification (MLPA) and direct sequencing. CHEK2 was analyzed by the high resolution melt (HRM) method and PALB2, RAD50, BRIP1 and CDH1 were analyzed by direct sequencing. Carrier frequencies between 82 (HBOC) BRCA1/ 2-founder mutation-negative Finnish individuals and 384 healthy Finnish population controls were compared by using Fisher's exact test. In silico prediction for novel missense variants effects was carried out by using Pathogenic-Or-Not -Pipeline (PON-P).

          Results

          Three previously reported breast cancer-associated variants, BRCA1 c.5095C > T, CHEK2 c.470T > C, and CHEK2 c.1100delC, were observed in eleven (13.4%) individuals. Ten of these individuals (12.2%) had CHEK2 variants, c.470T > C and/or c.1100delC. Fourteen novel sequence alterations and nine individuals with more than one non-synonymous variant were identified. One of the novel variants, BRCA2 c.72A > T (Leu24Phe) was predicted to be likely pathogenic in silico. No large genomic rearrangements were detected in BRCA1/2 by multiplex ligation-dependent probe amplification (MLPA).

          Conclusions

          In this study, mutations in previously known breast cancer susceptibility genes can explain 13.4% of the analyzed high-risk BRCA1/2-negative HBOC individuals. CHEK2 mutations, c.470T > C and c.1100delC, make a considerable contribution (12.2%) to these high-risk individuals but further segregation analysis is needed to evaluate the clinical significance of these mutations before applying them in clinical use. Additionally, we identified novel variants that warrant additional studies. Our current genetic testing protocol for 28 Finnish BRCA1/2-founder mutations and protein truncation test (PTT) of the largest exons is sensitive enough for clinical use as a primary screening tool.

          Related collections

          Most cited references35

          • Record: found
          • Abstract: found
          • Article: not found

          A strong candidate for the breast and ovarian cancer susceptibility gene BRCA1.

          A strong candidate for the 17q-linked BRCA1 gene, which influences susceptibility to breast and ovarian cancer, has been identified by positional cloning methods. Probable predisposing mutations have been detected in five of eight kindreds presumed to segregate BRCA1 susceptibility alleles. The mutations include an 11-base pair deletion, a 1-base pair insertion, a stop codon, a missense substitution, and an inferred regulatory mutation. The BRCA1 gene is expressed in numerous tissues, including breast and ovary, and encodes a predicted protein of 1863 amino acids. This protein contains a zinc finger domain in its amino-terminal region, but is otherwise unrelated to previously described proteins. Identification of BRCA1 should facilitate early diagnosis of breast and ovarian cancer susceptibility in some individuals as well as a better understanding of breast cancer biology.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Control of BRCA2 cellular and clinical functions by a nuclear partner, PALB2.

            BRCA2 mutations predispose carriers to breast and ovarian cancer and can also cause other cancers and Fanconi anemia. BRCA2 acts as a "caretaker" of genome integrity by enabling homologous recombination (HR)-based, error-free DNA double-strand break repair (DSBR) and intra-S phase DNA damage checkpoint control. Described here is the identification of PALB2, a BRCA2 binding protein. PALB2 colocalizes with BRCA2 in nuclear foci, promotes its localization and stability in key nuclear structures (e.g., chromatin and nuclear matrix), and enables its recombinational repair and checkpoint functions. In addition, multiple, germline BRCA2 missense mutations identified in breast cancer patients but of heretofore unknown biological/clinical consequence appear to disrupt PALB2 binding and disable BRCA2 HR/DSBR function. Thus, PALB2 licenses key cellular biochemical properties of BRCA2 and ensures its tumor suppression function.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Very high risk of cancer in familial Peutz-Jeghers syndrome.

              The Peutz-Jeghers syndrome (PJS) is an autosomal dominant polyposis disorder with increased risk of multiple cancers, but literature estimates of risk vary. We performed an individual patient meta-analysis to determine the relative risk (RR) of cancer in patients with PJS compared with the general population based on 210 individuals described in 6 publications. For patients with PJS, the RR for all cancers was 15.2 (95% confidence limits [CL], 2, 19). A statistically significant increase of RR was noted for esophagus (57; CL, 2.5, 557), stomach (213; CL, 96, 368), small intestine (520; CL, 220, 1306), colon (84; CL, 47, 137), pancreas (132; CL, 44, 261), lung (17.0; CL, 5.4, 39), breast (15.2; CL, 7.6, 27), uterus (16.0; CL, 1.9, 56), ovary (27; CL, 7.3, 68), but not testicular or cervical malignancies. Cumulative risk for all cancer was 93% from age 15 to 64 years old. Patients with PJS are at very high relative and absolute risk for gastrointestinal and nongastrointestinal cancers.
                Bookmark

                Author and article information

                Journal
                Breast Cancer Res
                Breast Cancer Research : BCR
                BioMed Central
                1465-5411
                1465-542X
                2011
                28 February 2011
                : 13
                : 1
                : R20
                Affiliations
                [1 ]Institute of Biomedical Technology, University of Tampere, Biokatu 8, Tampere, 33520, Finland
                [2 ]Centre for Laboratory Medicine, Tampere University Hospital, Biokatu 4, Tampere, 33520, Finland
                [3 ]Department of Pediatrics, Genetics Outpatient Clinic, Tampere University Hospital, Biokatu 8, Tampere, 33520, Finland
                Article
                bcr2832
                10.1186/bcr2832
                3109589
                21356067
                d9748e62-2500-4f94-bc37-f24d86761060
                Copyright ©2011 Kuusisto et al.; licensee BioMed Central Ltd.

                This is an open access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 9 August 2010
                : 14 December 2010
                : 28 February 2011
                Categories
                Research Article

                Oncology & Radiotherapy
                Oncology & Radiotherapy

                Comments

                Comment on this article