10
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Identification of G protein-coupled receptors required for vitellogenin uptake into the oocytes of the red flour beetle, Tribolium castaneum

      research-article
      a , 1 , 2 , b , 2
      Scientific Reports
      Nature Publishing Group

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Previous studies suggested that a membrane receptor might be involved in mediating vitellogenin (Vg) uptake and juvenile hormone (JH)-regulated remodeling of follicular epithelium (also called ‘patency’). G protein-coupled receptor (GPCR) family is one of the largest membrane receptor protein families and controls many key physiological processes. To investigate the role of GPCRs in insect reproduction and juvenile hormone-regulated Vg uptake, we performed a comprehensive RNA interference (RNAi) screen targeting GPCRs in the red flour beetle, Tribolium castaneum. Out of 112 GPCRs tested, knockdown of 41 GPCRs resulted in a reduction in fecundity. Interestingly, RNAi against two GPCRs (a Rhodopsin-like receptor and a Dopamine D2-like receptor) led to a significant reduction in Vg accumulation in developing oocytes. Functional assays of these two GPCRs showed that JH triggers a dose-dependent inhibition of intracellular cAMP levels in HEK293 cells expressing Tribolium Dopamine D2-like receptor. These data suggest that Dopamine D2-like receptor plays crucial roles in regulating Vg uptake and is a promising candidate membrane receptor mediating JH regulation of patency in the red flour beetle.

          Related collections

          Most cited references25

          • Record: found
          • Abstract: found
          • Article: not found

          G protein-coupled receptors in Anopheles gambiae.

          We used bioinformatic approaches to identify a total of 276 G protein-coupled receptors (GPCRs) from the Anopheles gambiae genome. These include GPCRs that are likely to play roles in pathways affecting almost every aspect of the mosquito's life cycle. Seventy-nine candidate odorant receptors were characterized for tissue expression and, along with 76 putative gustatory receptors, for their molecular evolution relative to Drosophila melanogaster. Examples of lineage-specific gene expansions were observed as well as a single instance of unusually high sequence conservation.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Cloning, expression, and characterization of a membrane progestin receptor and evidence it is an intermediary in meiotic maturation of fish oocytes.

            The structures of membrane receptors mediating rapid, nongenomic actions of steroids have not been identified. We describe the cloning of a cDNA from spotted seatrout ovaries encoding a protein that satisfies the following seven criteria for its designation as a steroid membrane receptor: plausible structure, tissue specificity, cellular distribution, steroid binding, signal transduction, hormonal regulation, and biological relevance. For plausible structure, computer modeling predicts that the protein has seven transmembrane domains, typical of G protein-coupled receptors. The mRNA (4.0 kb) is only detected in the brain and reproductive tissues on Northern blots. Antisera only detect the protein (40 kDa) in plasma membranes of reproductive tissues. The recombinant protein produced in an Escherichia coli expression system has a high affinity (K(d) = 30 nM), saturable, displaceable, single binding site specific for progestins. Progestins alter signal transduction pathways, activating mitogen-activated protein kinase and inhibiting adenylyl cyclase, in a transfected mammalian cell line. Inhibition of adenylyl cyclase is pertussis toxin sensitive, suggesting the receptor may be coupled to an inhibitory G protein. Progestins and gonadotropin up-regulate both mRNA and protein levels in seatrout ovaries. Changes in receptor abundance in response to hormones and at various stages of oocyte development, its probable coupling to an inhibitory G protein and inhibition of progestin induction of oocyte maturation upon microinjection of antisense oligonucleotides are consistent with the identity of the receptor as an intermediary in oocyte maturation. These characteristics suggest the fish protein is a membrane progestin receptor mediating a "nonclassical" action of progestins to induce oocyte maturation in fish.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Dopaminergic modulation of sucrose acceptance behavior in Drosophila.

              For an animal to survive in a constantly changing environment, its behavior must be shaped by the complex milieu of sensory stimuli it detects, its previous experience, and its internal state. Although taste behaviors in the fly are relatively simple, with sugars eliciting acceptance behavior and bitter compounds avoidance, these behaviors are also plastic and are modified by intrinsic and extrinsic cues, such as hunger and sensory stimuli. Here, we show that dopamine modulates a simple taste behavior, proboscis extension to sucrose. Conditional silencing of dopaminergic neurons reduces proboscis extension probability, and increased activation of dopaminergic neurons increases extension to sucrose, but not to bitter compounds or water. One dopaminergic neuron with extensive branching in the primary taste relay, the subesophageal ganglion, triggers proboscis extension, and its activity is altered by satiety state. These studies demonstrate the marked specificity of dopamine signaling and provide a foundation to examine neural mechanisms of feeding modulation in the fly. Copyright © 2012 Elsevier Inc. All rights reserved.
                Bookmark

                Author and article information

                Journal
                Sci Rep
                Sci Rep
                Scientific Reports
                Nature Publishing Group
                2045-2322
                09 June 2016
                2016
                : 6
                : 27648
                Affiliations
                [1 ]Department of Genetics, Development, and Cell Biology, Iowa State University , Ames, IA 50011, USA
                [2 ]Department of Entomology, University of Kentucky , Lexington, KY 40546-0091, USA
                Author notes
                Article
                srep27648
                10.1038/srep27648
                4899757
                27277501
                d9966028-9941-4c8b-8d75-32235624ec39
                Copyright © 2016, Macmillan Publishers Limited

                This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

                History
                : 06 September 2015
                : 17 May 2016
                Categories
                Article

                Uncategorized
                Uncategorized

                Comments

                Comment on this article