3
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Time in range centered diabetes care

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract.

          Optimal glycemic control remains challenging and elusive for many people with diabetes. With the comprehensive clinical evidence on safety and efficiency in large populations, and with broader reimbursement, the adoption of continuous glucose monitoring (CGM) is rapidly increasing. Standardized visual reporting and interpretation of CGM data and clear and understandable clinical targets will help professionals and individuals with diabetes use diabetes technology more efficiently, and finally improve long-term outcomes with less everyday disease burden. For the majority of people with type 1 or type 2 diabetes, time in range (between 70 and 180 mg/dL, or 3.9 and 10 mmol/L) target of more than 70% is recommended, with each incremental increase of 5% towards this target being clinically meaningful. At the same time, the goal is to minimize glycemic excursions: a recommended target for a time below range (< 70 mg/dL or < 3.9 mmol/L) is less than 4%, and time above range (> 180 mg/dL or 10 mmol/L) less than 25%, with less stringent goals for older individuals or those at increased risk. These targets should be individualized: the personal use of CGM with the standardized data presentation provides all necessary means to accurately tailor diabetes management to the needs of each individual with diabetes.

          Related collections

          Most cited references110

          • Record: found
          • Abstract: found
          • Article: not found

          The Effect of Intensive Treatment of Diabetes on the Development and Progression of Long-Term Complications in Insulin-Dependent Diabetes Mellitus

          Long-term microvascular and neurologic complications cause major morbidity and mortality in patients with insulin-dependent diabetes mellitus (IDDM). We examined whether intensive treatment with the goal of maintaining blood glucose concentrations close to the normal range could decrease the frequency and severity of these complications. A total of 1441 patients with IDDM--726 with no retinopathy at base line (the primary-prevention cohort) and 715 with mild retinopathy (the secondary-intervention cohort) were randomly assigned to intensive therapy administered either with an external insulin pump or by three or more daily insulin injections and guided by frequent blood glucose monitoring or to conventional therapy with one or two daily insulin injections. The patients were followed for a mean of 6.5 years, and the appearance and progression of retinopathy and other complications were assessed regularly. In the primary-prevention cohort, intensive therapy reduced the adjusted mean risk for the development of retinopathy by 76 percent (95 percent confidence interval, 62 to 85 percent), as compared with conventional therapy. In the secondary-intervention cohort, intensive therapy slowed the progression of retinopathy by 54 percent (95 percent confidence interval, 39 to 66 percent) and reduced the development of proliferative or severe nonproliferative retinopathy by 47 percent (95 percent confidence interval, 14 to 67 percent). In the two cohorts combined, intensive therapy reduced the occurrence of microalbuminuria (urinary albumin excretion of > or = 40 mg per 24 hours) by 39 percent (95 percent confidence interval, 21 to 52 percent), that of albuminuria (urinary albumin excretion of > or = 300 mg per 24 hours) by 54 percent (95 percent confidence interval 19 to 74 percent), and that of clinical neuropathy by 60 percent (95 percent confidence interval, 38 to 74 percent). The chief adverse event associated with intensive therapy was a two-to-threefold increase in severe hypoglycemia. Intensive therapy effectively delays the onset and slows the progression of diabetic retinopathy, nephropathy, and neuropathy in patients with IDDM.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Clinical Targets for Continuous Glucose Monitoring Data Interpretation: Recommendations From the International Consensus on Time in Range

            Improvements in sensor accuracy, greater convenience and ease of use, and expanding reimbursement have led to growing adoption of continuous glucose monitoring (CGM). However, successful utilization of CGM technology in routine clinical practice remains relatively low. This may be due in part to the lack of clear and agreed-upon glycemic targets that both diabetes teams and people with diabetes can work toward. Although unified recommendations for use of key CGM metrics have been established in three separate peer-reviewed articles, formal adoption by diabetes professional organizations and guidance in the practical application of these metrics in clinical practice have been lacking. In February 2019, the Advanced Technologies & Treatments for Diabetes (ATTD) Congress convened an international panel of physicians, researchers, and individuals with diabetes who are expert in CGM technologies to address this issue. This article summarizes the ATTD consensus recommendations for relevant aspects of CGM data utilization and reporting among the various diabetes populations.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Global Prevalence and Major Risk Factors of Diabetic Retinopathy

              OBJECTIVE To examine the global prevalence and major risk factors for diabetic retinopathy (DR) and vision-threatening diabetic retinopathy (VTDR) among people with diabetes. RESEARCH DESIGN AND METHODS A pooled analysis using individual participant data from population-based studies around the world was performed. A systematic literature review was conducted to identify all population-based studies in general populations or individuals with diabetes who had ascertained DR from retinal photographs. Studies provided data for DR end points, including any DR, proliferative DR, diabetic macular edema, and VTDR, and also major systemic risk factors. Pooled prevalence estimates were directly age-standardized to the 2010 World Diabetes Population aged 20–79 years. RESULTS A total of 35 studies (1980–2008) provided data from 22,896 individuals with diabetes. The overall prevalence was 34.6% (95% CI 34.5–34.8) for any DR, 6.96% (6.87–7.04) for proliferative DR, 6.81% (6.74–6.89) for diabetic macular edema, and 10.2% (10.1–10.3) for VTDR. All DR prevalence end points increased with diabetes duration, hemoglobin A1c, and blood pressure levels and were higher in people with type 1 compared with type 2 diabetes. CONCLUSIONS There are approximately 93 million people with DR, 17 million with proliferative DR, 21 million with diabetic macular edema, and 28 million with VTDR worldwide. Longer diabetes duration and poorer glycemic and blood pressure control are strongly associated with DR. These data highlight the substantial worldwide public health burden of DR and the importance of modifiable risk factors in its occurrence. This study is limited by data pooled from studies at different time points, with different methodologies and population characteristics.
                Bookmark

                Author and article information

                Journal
                Clin Pediatr Endocrinol
                Clin Pediatr Endocrinol
                CPE
                Clinical Pediatric Endocrinology
                The Japanese Society for Pediatric Endocrinology
                0918-5739
                1347-7358
                05 January 2021
                2021
                : 30
                : 1
                : 1-10
                Affiliations
                [1 ] University Children’s Hospital, University Medical Center Ljubljana, Ljubljana, Slovenia
                [2 ] Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
                Author notes
                Corresponding author: Tadej Battelino, M.D., Ph.D., Department of Pediatric Endocrinology, Diabetes and Metabolic Diseases, University Children’s Hospital, Bohoriceva 20, SI–1000 Ljubljana, Slovenia
                ORCID: 0000-0002-0273-4732
                Article
                2020-0057
                10.1297/cpe.30.1
                7783127
                33446946
                d9b1a5c0-88f1-49db-ae65-2bfaeb4f0094
                2021©The Japanese Society for Pediatric Endocrinology

                This is an open-access article distributed under the terms of the Creative Commons Attribution Non-Commercial No Derivatives (by-nc-nd) License. (CC-BY-NC-ND 4.0: http://creativecommons.org/licenses/by-nc-nd/4.0/ ).

                History
                : 15 September 2020
                : 17 September 2020
                Categories
                Review

                time in range,glucose variability,continuous glucose monitoring,diabetes technology,closed-loop,self-monitoring of blood glucose,diabetes mellitus

                Comments

                Comment on this article