Inviting an author to review:
Find an author and click ‘Invite to review selected article’ near their name.
Search for authorsSearch for similar articles
15
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Novel DNA targeted therapies for head and neck cancers: clinical potential and biomarkers

      review-article
      1 , 1 , 1 , 2
      Oncotarget
      Impact Journals LLC
      HNSCC, DNA targeted agents, radiation sensitization, biomarkers

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Head and neck squamous cell carcinoma is the sixth most common cancer worldwide and despite advances in treatment over the last years, there is still a relapse rate of 50%. New therapeutic agents are awaited to increase the survival of patients. DNA repair targeted agents in combination with standard DNA damaging therapies are a recent evolution in cancer treatment. These agents focus on the DNA damage repair pathways in cancer cells, which are often involved in therapeutic resistance. Interesting targets to overcome these cancer defense mechanisms are: PARP, DNA-PK, PI3K, ATM, ATR, CHK1/2, and WEE1 inhibitors. The application of DNA targeted agents in head and neck squamous cell cancer showed promising preclinical results which are translated to multiple ongoing clinical trials, although no FDA approval has emerged yet. Biomarkers are necessary to select the patients that can benefit the most from this treatment, although adequate biomarkers are limited and validation is needed to predict therapeutic response.

          Related collections

          Most cited references81

          • Record: found
          • Abstract: found
          • Article: not found

          Deficiency in the repair of DNA damage by homologous recombination and sensitivity to poly(ADP-ribose) polymerase inhibition.

          Deficiency in either of the breast cancer susceptibility proteins BRCA1 or BRCA2 induces profound cellular sensitivity to the inhibition of poly(ADP-ribose) polymerase (PARP) activity. We hypothesized that the critical role of BRCA1 and BRCA2 in the repair of double-strand breaks by homologous recombination (HR) was the underlying reason for this sensitivity. Here, we examine the effects of deficiency of several proteins involved in HR on sensitivity to PARP inhibition. We show that deficiency of RAD51, RAD54, DSS1, RPA1, NBS1, ATR, ATM, CHK1, CHK2, FANCD2, FANCA, or FANCC induces such sensitivity. This suggests that BRCA-deficient cells are, at least in part, sensitive to PARP inhibition because of HR deficiency. These results indicate that PARP inhibition might be a useful therapeutic strategy not only for the treatment of BRCA mutation-associated tumors but also for the treatment of a wider range of tumors bearing a variety of deficiencies in the HR pathway or displaying properties of 'BRCAness.'
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Targeting DNA damage response in cancer therapy

            Cancer chemotherapy and radiotherapy are designed to kill cancer cells mostly by inducing DNA damage. DNA damage is normally recognized and repaired by the intrinsic DNA damage response machinery. If the damaged lesions are successfully repaired, the cells will survive. In order to specifically and effectively kill cancer cells by therapies that induce DNA damage, it is important to take advantage of specific abnormalities in the DNA damage response machinery that are present in cancer cells but not in normal cells. Such properties of cancer cells can provide biomarkers or targets for sensitization. For example, defects or upregulation of the specific pathways that recognize or repair specific types of DNA damage can serve as biomarkers of favorable or poor response to therapies that induce such types of DNA damage. Inhibition of a DNA damage response pathway may enhance the therapeutic effects in combination with the DNA-damaging agents. Moreover, it may also be useful as a monotherapy when it achieves synthetic lethality, in which inhibition of a complementary DNA damage response pathway selectively kills cancer cells that have a defect in a particular DNA repair pathway. The most striking application of this strategy is the treatment of cancers deficient in homologous recombination by poly(ADP-ribose) polymerase inhibitors. In this review, we describe the impact of targeting the cancer-specific aberrations in the DNA damage response by explaining how these treatment strategies are currently being evaluated in preclinical or clinical trials.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Cancer-specific defects in DNA repair pathways as targets for personalized therapeutic approaches.

              Defects in DNA repair pathways enable cancer cells to accumulate genomic alterations that contribute to their aggressive phenotype. However, tumors rely on residual DNA repair capacities to survive the damage induced by genotoxic stress. This dichotomy might explain why only isolated DNA repair pathways are inactivated in cancer cells. Accordingly, synergism has been observed between DNA-damaging drugs and targeted inhibitors of DNA repair. DNA repair pathways are generally thought of as mutually exclusive mechanistic units handling different types of lesions in distinct cell cycle phases. Recent preclinical studies, however, provide strong evidence that multifunctional DNA repair hubs, which are involved in multiple conventional DNA repair pathways, are frequently altered in cancer. We therefore propose that targeted anticancer therapies should not only exploit synthetic lethal interactions between two single genes but also consider alterations in DNA repair hubs. Such a network-based approach considerably increases the opportunities for targeting DNA repair-defective tumors. Copyright © 2014 Elsevier Ltd. All rights reserved.
                Bookmark

                Author and article information

                Journal
                Oncotarget
                Oncotarget
                Oncotarget
                ImpactJ
                Oncotarget
                Impact Journals LLC
                1949-2553
                6 October 2017
                16 September 2017
                : 8
                : 46
                : 81662-81678
                Affiliations
                1 KU Leuven, University of Leuven, Department of Oncology, Laboratory of Experimental Radiotherapy, 3000 Leuven, Belgium
                2 Department of Radiation Oncology, Leuven Cancer Institute, UZ Leuven, 3000 Leuven, Belgium
                Author notes
                Correspondence to: Sandra Nuyts, sandra.nuyts@ 123456uzleuven.be
                Article
                20953
                10.18632/oncotarget.20953
                5655317
                29113422
                da10e7d7-14f7-43ec-824b-595fd86c6d00
                Copyright: © 2017 Glorieux et al.

                This article is distributed under the terms of the Creative Commons Attribution License (CC-BY), which permits unrestricted use and redistribution provided that the original author and source are credited.

                History
                : 13 June 2017
                : 27 August 2017
                Categories
                Review

                Oncology & Radiotherapy
                hnscc,dna targeted agents,radiation sensitization,biomarkers
                Oncology & Radiotherapy
                hnscc, dna targeted agents, radiation sensitization, biomarkers

                Comments

                Comment on this article