0
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Status of the laboratory infrastructure for detector calibration and characterization at the European XFEL

      Preprint

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The European X-ray Free Electron Laser (XFEL.EU) will provide unprecedented peak brilliance and ultra-short and spatially coherent X-ray pulses in an energy range of 0.25 to 25 keV . The pulse timing structure is unique with a burst of 2700 pulses of 100 fs length at a temporal distance of 220 ns followed by a 99.4 ms gap. To make optimal use of this timing structure and energy range a great variety of detectors are being developed for use at XFEL.EU, including 2D X-ray imaging cameras that are able to detect images at a rate of 4.5 MHz, provide dynamic ranges up to 10\(^5\) photons per pulse per pixel under different operating conditions and covering a large range of angular resolution. In order to characterize, commission and calibrate this variety of detectors and for testing of detector prototypes the XFEL.EU detector group is building up an X-ray test laboratory that allows testing of detectors with X-ray photons under conditions that are as similar to the future beam line conditions at the XFEL.EU as is possible with laboratory sources. A total of four test environments provide the infrastructure for detector tests and calibration: two portable setups that utilize low power X-ray sources and radioactive isotopes, a test environment where a commercial high power X-ray generator is in use, and a pulsed X-ray/electron source which will provide pulses as short as 25 ns in XFEL.EU burst mode combined with target anodes of different materials. The status of the test environments, three of which are already in use while one is in commissioning phase, will be presented as well as first results from performance tests and characterization of the sources.

          Related collections

          Most cited references4

          • Record: found
          • Abstract: not found
          • Article: not found

          Detectors and Calibration Concept for the European XFEL

            Bookmark
            • Record: found
            • Abstract: not found
            • Conference Proceedings: not found

            Development of the LPD, a high dynamic range pixel detector for the European XFEL

              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Performance of an LPD prototype detector at MHz frame rates under Synchrotron and FEL radiation

              A MHz frame rate X-ray area detector (LPD - Large Pixel Detector) is under development by the Rutherford Appleton Laboratory for the European XFEL. The detector will have 1 million pixels and allows analogue storage of 512 images taken at 4.5 MHz in the detector front end. The LPD detector has 500 mm thick silicon sensor tiles that are bump bonded to a readout ASIC. The ASICs preamplifier provides relatively low noise at high speed which results in a high dynamic range of 10^5 photons over an energy range of 5-20 keV. Small scale prototypes of 32x256 pixels (LPD 2-Tile detector) and 256x256 pixels (LPD supermodule detector) are now available for X-ray tests. The performance of prototypes of the detector is reported for first tests under synchrotron radiation (PETRA III at DESY) and Free-Electron-Laser radiation (LCLS at SLAC). The initial performance of the detector in terms of signal range and noise, radiation hardness and spatial and temporal response are reported. The main result is that the 4.5 MHz sampling detection chain is reliably working, including the analogue on-chip memory concept. The detector is at least radiation hard up to 5 MGy at 12 keV. In addition the multiple gain concept has been demonstrated over a dynamic range to 10^4 at 12 keV with a readout noise equivalent to <1 photon rms in its most sensitive mode.
                Bookmark

                Author and article information

                Journal
                2017-03-21
                Article
                10.1088/1748-0221/11/12/C12051
                1703.07108
                dab9af14-44ed-4407-8ede-3cec74a6e53a

                http://arxiv.org/licenses/nonexclusive-distrib/1.0/

                History
                Custom metadata
                J. Instrum.: Conf. Ser. 11 (12), C12051 (2016)
                8 pages, 7 figures including corrected captions with included copyright information also to be published in an erratum
                physics.ins-det

                Technical & Applied physics
                Technical & Applied physics

                Comments

                Comment on this article