19
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Oxidoreductases and Reactive Oxygen Species in Conversion of Lignocellulosic Biomass

      ,   , ,
      Microbiology and Molecular Biology Reviews
      American Society for Microbiology

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          SUMMARY

          Biomass constitutes an appealing alternative to fossil resources for the production of materials and energy. The abundance and attractiveness of vegetal biomass come along with challenges pertaining to the intricacy of its structure, evolved during billions of years to face and resist abiotic and biotic attacks. To achieve the daunting goal of plant cell wall decomposition, microorganisms have developed many (enzymatic) strategies, from which we seek inspiration to develop biotechnological processes. A major breakthrough in the field has been the discovery of enzymes today known as lytic polysaccharide monooxygenases (LPMOs), which, by catalyzing the oxidative cleavage of recalcitrant polysaccharides, allow canonical hydrolytic enzymes to depolymerize the biomass more efficiently. Very recently, it has been shown that LPMOs are not classical monooxygenases in that they can also use hydrogen peroxide (H 2O 2) as an oxidant. This discovery calls for a revision of our understanding of how lignocellulolytic enzymes are connected since H 2O 2 is produced and used by several of them. The first part of this review is dedicated to the LPMO paradigm, describing knowns, unknowns, and uncertainties. We then present different lignocellulolytic redox systems, enzymatic or not, that depend on fluxes of reactive oxygen species (ROS). Based on an assessment of these putatively interconnected systems, we suggest that fine-tuning of H 2O 2 levels and proximity between sites of H 2O 2 production and consumption are important for fungal biomass conversion. In the last part of this review, we discuss how our evolving understanding of redox processes involved in biomass depolymerization may translate into industrial applications.

          Related collections

          Most cited references361

          • Record: found
          • Abstract: found
          • Article: not found

          ROS as signalling molecules: mechanisms that generate specificity in ROS homeostasis.

          Reactive oxygen species (ROS) have been shown to be toxic but also function as signalling molecules. This biological paradox underlies mechanisms that are important for the integrity and fitness of living organisms and their ageing. The pathways that regulate ROS homeostasis are crucial for mitigating the toxicity of ROS and provide strong evidence about specificity in ROS signalling. By taking advantage of the chemistry of ROS, highly specific mechanisms have evolved that form the basis of oxidant scavenging and ROS signalling systems.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Pretreatment technologies for an efficient bioethanol production process based on enzymatic hydrolysis: A review.

            Biofuel produced from lignocellulosic materials, so-called second generation bioethanol shows energetic, economic and environmental advantages in comparison to bioethanol from starch or sugar. However, physical and chemical barriers caused by the close association of the main components of lignocellulosic biomass, hinder the hydrolysis of cellulose and hemicellulose to fermentable sugars. The main goal of pretreatment is to increase the enzyme accessibility improving digestibility of cellulose. Each pretreatment has a specific effect on the cellulose, hemicellulose and lignin fraction thus, different pretreatment methods and conditions should be chosen according to the process configuration selected for the subsequent hydrolysis and fermentation steps. This paper reviews the most interesting technologies for ethanol production from lignocellulose and it points out several key properties that should be targeted for low-cost and advanced pretreatment processes. Copyright 2009 Elsevier Ltd. All rights reserved.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              LXXIII.—Oxidation of tartaric acid in presence of iron

                Bookmark

                Author and article information

                Journal
                Microbiology and Molecular Biology Reviews
                Microbiol Mol Biol Rev
                American Society for Microbiology
                1092-2172
                1098-5557
                December 2018
                September 26 2018
                : 82
                : 4
                Article
                10.1128/MMBR.00029-18
                30257993
                dabc0f7a-2301-486d-a7a9-0c8472ee4133
                © 2018
                History

                Comments

                Comment on this article