9
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      High-resolution, high-throughput magnetic paragraph sign resonance imaging of mouse embryonic paragraph sign anatomy using a fast gradient-echo sequence.

      Magma (New York, N.y.)
      Anatomy, Cross-Sectional, methods, Animals, Echo-Planar Imaging, Fetus, anatomy & histology, Image Enhancement, Imaging, Three-Dimensional, Mice, Mice, Inbred C57BL, Sensitivity and Specificity

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Embryonic development in normal and genetically modified mice is commonly analysed by histological sectioning. This procedure is time-consuming, prone to artefact, and results in the loss of three-dimensional (3D) information. Magnetic resonance imaging (MRI) of embryos has the potential of noninvasively acquiring a complete 3D data set. Published methods have used spin-echo techniques with inherently high signal-to-noise ratio (SNR); however, they required either perfusion of the embryo with a contrast agent, or prolonged acquisition times to improve contrast and resolution. Here, we show that a standard preparation (i.e. paraformaldehyde fixation) of 15.5 days post-coitum embryos followed by MRI using a fast gradient-echo sequence with T(1)-weighting achieves high resolution and high throughput for investigating mouse embryonic anatomy. 3D data sets were acquired in overnight experiments (<9 h) with an experimental resolution of approximately 25 microm(3). This spatial resolution is twofold higher than the values reported previously for comparable paraformaldehyde-fixed embryos, and it was obtained in less than a quarter of the time with sufficient SNR. Our approach combines speed, high resolution and contrast with a simple preparation technique and minimal operator time (<1 h). It allows rapid routine 3D characterisation of normal and abnormal mouse embryonic anatomy.

          Related collections

          Author and article information

          Comments

          Comment on this article