17
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Micelles Structure Development as a Strategy to Improve Smart Cancer Therapy

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Micelles as colloidal suspension have attracted considerable attention due to their potential use for both cancer diagnosis and therapy. These structures have proven their ability to deliver poorly water-soluble anticancer drugs, improve drug stability, and have good penetration and site-specificity, leading to enhance therapeutic efficacy. Micelles are composed of hydrophobic and hydrophilic components assembled into nanosized spherical, ellipsoid, cylindrical, or unilamellar structures. For their simple formation, they are widely studied, either by using opposite polymers attachment consisting of two or more block copolymers, or by using fatty acid molecules that can modify themselves in a rounded shape. Recently, hybrid and responsive stimuli nanomicelles are formed either by integration with metal nanoparticles such as silver, gold, iron oxide nanoparticles inside micelles or by a combination of lipids and polymers into single composite. Herein, through this special issue, an updated overview of micelles development and their application for cancer therapy will be discussed.

          Related collections

          Most cited references104

          • Record: found
          • Abstract: found
          • Article: not found

          In vivo imaging of quantum dots encapsulated in phospholipid micelles.

          Fluorescent semiconductor nanocrystals (quantum dots) have the potential to revolutionize biological imaging, but their use has been limited by difficulties in obtaining nanocrystals that are biocompatible. To address this problem, we encapsulated individual nanocrystals in phospholipid block-copolymer micelles and demonstrated both in vitro and in vivo imaging. When conjugated to DNA, the nanocrystal-micelles acted as in vitro fluorescent probes to hybridize to specific complementary sequences. Moreover, when injected into Xenopus embryos, the nanocrystal-micelles were stable, nontoxic (<5 x 10(9) nanocrystals per cell), cell autonomous, and slow to photobleach. Nanocrystal fluorescence could be followed to the tadpole stage, allowing lineage-tracing experiments in embryogenesis.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Nanomedicine: current status and future prospects.

            Applications of nanotechnology for treatment, diagnosis, monitoring, and control of biological systems has recently been referred to as "nanomedicine" by the National Institutes of Health. Research into the rational delivery and targeting of pharmaceutical, therapeutic, and diagnostic agents is at the forefront of projects in nanomedicine. These involve the identification of precise targets (cells and receptors) related to specific clinical conditions and choice of the appropriate nanocarriers to achieve the required responses while minimizing the side effects. Mononuclear phagocytes, dendritic cells, endothelial cells, and cancers (tumor cells, as well as tumor neovasculature) are key targets. Today, nanotechnology and nanoscience approaches to particle design and formulation are beginning to expand the market for many drugs and are forming the basis for a highly profitable niche within the industry, but some predicted benefits are hyped. This article will highlight rational approaches in design and surface engineering of nanoscale vehicles and entities for site-specific drug delivery and medical imaging after parenteral administration. Potential pitfalls or side effects associated with nanoparticles are also discussed.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Progress of drug-loaded polymeric micelles into clinical studies.

              Targeting tumors with long-circulating nano-scaled carriers is a promising strategy for systemic cancer treatment. Compared with free small therapeutic agents, nanocarriers can selectively accumulate in solid tumors through the enhanced permeability and retention (EPR) effect, which is characterized by leaky blood vessels and impaired lymphatic drainage in tumor tissues, and achieve superior therapeutic efficacy, while reducing side effects. In this way, drug-loaded polymeric micelles, i.e. self-assemblies of amphiphilic block copolymers consisting of a hydrophobic core as a drug reservoir and a poly(ethylene glycol) (PEG) hydrophilic shell, have demonstrated outstanding features as tumor-targeted nanocarriers with high translational potential, and several micelle formulations are currently under clinical evaluation. This review summarizes recent efforts in the development of these polymeric micelles and their performance in human studies, as well as our recent progress in polymeric micelles for the delivery of nucleic acids and imaging. Copyright © 2014 Elsevier B.V. All rights reserved.
                Bookmark

                Author and article information

                Journal
                Cancers (Basel)
                Cancers (Basel)
                cancers
                Cancers
                MDPI
                2072-6694
                20 July 2018
                July 2018
                : 10
                : 7
                : 238
                Affiliations
                [1 ]Sohag Cancer Center, Sohag 82511, Egypt; nemany.hanafy@ 123456nanotec.cnr.it
                [2 ]Institute of Nanoscience and Nanotechnology, Kafrelsheikh University, Kafrelsheikh 33516, Egypt; elkemary@ 123456sci.kfs.edu.eg
                [3 ]CNR NANOTEC-Istituto di Nanotecnologia, 73100 Lecce, Italy
                Author notes
                [* ]Correspondence: stefano.leporatti@ 123456nanotec.cnr.it ; Tel.: +39-083-231-9829
                Author information
                https://orcid.org/0000-0001-5861-6973
                https://orcid.org/0000-0001-5912-7565
                Article
                cancers-10-00238
                10.3390/cancers10070238
                6071246
                30037052
                dae578d5-c2bb-4ced-81bc-6a67a294f7e4
                © 2018 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 08 June 2018
                : 17 July 2018
                Categories
                Review

                micelles,hybrid polymeric and stimuli-responsive nanomicelles,cancer therapy

                Comments

                Comment on this article