11
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Synergistic maximization of the carbohydrate output and lignin processability by combinatorial pretreatment

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Combinatorial pretreatments with a low holding temperature were developed in an effort to synergistically improve the carbohydrate output and lignin processability from corn stover.

          Abstract

          Lignocellulosic biorefineries have gained much attention worldwide as a potential solution to the challenges of energy demand and global climate change. However, the industrial implementation of biorefineries has been hindered by low fermentable sugar yields and low lignin processability. Combinatorial pretreatments with a low holding temperature were investigated in an effort to synergistically improve the carbohydrate output and lignin processability from corn stover. Upon combinatorial pretreatment with 1% H 2SO 4 for 30 min followed by 1% NaOH for 60 min at 120 °C, glucan and xylan conversion increased by 11.2% and 8.3% respectively relative to single pretreatment. This combinational pretreatment removed the amorphous portion, disrupted the rigid structure, and increased the water holding capacity of corn stover, thus increasing the hydrolysis performance. With whole fractionation by combinatorial pretreatment, glucose and xylose yields were 88.4% and 72.6%, respectively, representing increases of 10.0% and 8.1%. The lignin yield was 19.7% in the solid residue and 77.6% in the liquid stream, which increased by 33.4%. When grown in fed-batch fermentation mode, a record level of polyhydroxyalkanoate (PHA) concentration (1.0 g l −1) was obtained using lignin as a carbon source by Pseudomonas putida KT2440. Lignin characterization results showed that combinatorial pretreatment increased the G- and H-lignin content, reduced the β–β and β-O-4 groups, and fractionated more aromatic monomers, thus facilitating lignin processability into PHA. These results highlighted the use of combinational pretreatment at a low holding temperature as a means to synergistically maximize the carbohydrate output and lignin processability, which provides a unique set of features to improve the biorefining performance.

          Related collections

          Most cited references54

          • Record: found
          • Abstract: found
          • Article: not found

          Opportunities and challenges for a sustainable energy future.

          Access to clean, affordable and reliable energy has been a cornerstone of the world's increasing prosperity and economic growth since the beginning of the industrial revolution. Our use of energy in the twenty-first century must also be sustainable. Solar and water-based energy generation, and engineering of microbes to produce biofuels are a few examples of the alternatives. This Perspective puts these opportunities into a larger context by relating them to a number of aspects in the transportation and electricity generation sectors. It also provides a snapshot of the current energy landscape and discusses several research and development opportunities and pathways that could lead to a prosperous, sustainable and secure energy future for the world.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Technology development for the production of biobased products from biorefinery carbohydrates—the US Department of Energy’s “Top 10” revisited

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Features of promising technologies for pretreatment of lignocellulosic biomass.

              N. Mosier (2005)
              Cellulosic plant material represents an as-of-yet untapped source of fermentable sugars for significant industrial use. Many physio-chemical structural and compositional factors hinder the enzymatic digestibility of cellulose present in lignocellulosic biomass. The goal of any pretreatment technology is to alter or remove structural and compositional impediments to hydrolysis in order to improve the rate of enzyme hydrolysis and increase yields of fermentable sugars from cellulose or hemicellulose. These methods cause physical and/or chemical changes in the plant biomass in order to achieve this result. Experimental investigation of physical changes and chemical reactions that occur during pretreatment is required for the development of effective and mechanistic models that can be used for the rational design of pretreatment processes. Furthermore, pretreatment processing conditions must be tailored to the specific chemical and structural composition of the various, and variable, sources of lignocellulosic biomass. This paper reviews process parameters and their fundamental modes of action for promising pretreatment methods.
                Bookmark

                Author and article information

                Journal
                GRCHFJ
                Green Chem.
                Green Chem.
                Royal Society of Chemistry (RSC)
                1463-9262
                1463-9270
                2017
                2017
                : 19
                : 20
                : 4939-4955
                Article
                10.1039/C7GC02057K
                daefdd10-034b-4ec0-8b45-cf8ddca6e034
                © 2017
                History

                Comments

                Comment on this article