7
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Effective photo-enhancement of cellular activity of fluorophore-octaarginine antisense PNA conjugates correlates with singlet oxygen formation, endosomal escape and chromophore lipophilicity

      research-article
      , ,
      Scientific Reports
      Nature Publishing Group UK

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Photochemical internalization (PCI) is a cellular drug delivery method based on the generation of light-induced reactive oxygen species (ROS) causing damage to the endosomal membrane and thereby resulting in drug release to the cytoplasm. In our study a series of antisense fluorophore octaarginine peptide nucleic acid (PNA) conjugates were investigated in terms of PCI assisted cellular activity. It is found that tetramethylrhodamine and Alexa Fluor 555 conjugated octaarginine PNA upon irradiation exhibit more than ten-fold increase in antisense activity in the HeLa pLuc705 luciferase splice correction assay. An analogous fluorescein conjugate did not show any significant enhancement due to photobleaching, and neither did an Alexa Fluor 488 conjugate. Using fluorescence microscopy a correlation between endosomal escape and antisense activity was demonstrated, and in parallel a correlation to localized formation of ROS assigned primarily to singlet oxygen was also observed. The results show that tetramethylrhodamine (and to lesser extent Alexa Fluor 555) conjugated octaarginine PNAs are as effectively delivered to the cytosol compartment by PCI as by chloroquine assisted delivery and also indicate that efficient photodynamic endosomal escape is strongly dependent on the quantum yield for photochemical singlet oxygen formation, photostability as well as the lipophilicity of the chromophore.

          Related collections

          Most cited references36

          • Record: found
          • Abstract: found
          • Article: not found

          Polyarginine enters cells more efficiently than other polycationic homopolymers.

          Homopolymers or peptides containing a high percentage of cationic amino acids have been shown to have a unique ability to cross the plasma membrane of cells, and consequently have been used to facilitate the uptake of a variety of biopolymers and small molecules. To investigate whether the polycationic character of these molecules, or some other structural feature, was the molecular basis for the effect, the ability of a variety of homopolymers to enter cells was assayed by confocal microscopy and flow cytometry. Polymers of L- or D-arginine containing six or more amino acids entered cells far more effectively than polymers of equal length composed of lysine, ornithine and histidine. Peptides of fewer than six amino acids were ineffective. The length of the arginine side-chain could be varied without significant loss of activity. These data combined with the inability of polymers of citrulline to enter cells demonstrated that the guanidine headgroup of arginine was the critical structural component responsible for the biological activity. Cellular uptake could be inhibited by preincubation of the cells with sodium azide, but not by low temperature (3 degrees C), indicating that the process was energy dependent, but did not involve endocytosis.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            A review of progress in clinical photodynamic therapy.

            Z. Huang (2005)
            Photodynamic therapy (PDT) has received increased attention since the regulatory approvals have been granted to several photosensitizing drugs and light applicators worldwide. Much progress has been seen in basic sciences and clinical photodynamics in recent years. This review will focus on new developments of clinical investigation and discuss the usefulness of various forms of PDT techniques for curative or palliative treatment of malignant and non-malignant diseases.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Arginine-rich cell-penetrating peptides.

              Arginine-rich cell-penetrating peptides are short cationic peptides capable of traversing the plasma membranes of eukaryotic cells. While successful intracellular delivery of many biologically active macromolecules has been accomplished using these peptides, their mechanisms of cell entry are still under investigation. Recent dialogue has centered on a debate over the roles that direct translocation and endocytotic pathways play in internalization of cell-penetrating peptides. In this paper, we review the evidence for the broad range of proposed mechanisms, and show that each distinct process requires negative Gaussian membrane curvature as a necessary condition. Generation of negative Gaussian curvature by cell-penetrating peptides is directly related to their arginine content. We illustrate these concepts using HIV TAT as an example. Copyright 2009. Published by Elsevier B.V.
                Bookmark

                Author and article information

                Contributors
                ptrn@sund.ku.dk
                Journal
                Sci Rep
                Sci Rep
                Scientific Reports
                Nature Publishing Group UK (London )
                2045-2322
                12 January 2018
                12 January 2018
                2018
                : 8
                : 638
                Affiliations
                ISNI 0000 0001 0674 042X, GRID grid.5254.6, Department of Cellular and Molecular Medicine, , Faculty of Health and Medical Sciences, University of Copenhagen, ; Copenhagen, Denmark
                Author information
                http://orcid.org/0000-0002-9892-1937
                Article
                18947
                10.1038/s41598-017-18947-x
                5766568
                29330463
                dafc652a-5290-43e8-a76e-fcceeb8b8423
                © The Author(s) 2018

                Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

                History
                : 11 August 2017
                : 19 December 2017
                Categories
                Article
                Custom metadata
                © The Author(s) 2018

                Uncategorized
                Uncategorized

                Comments

                Comment on this article