5
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Type-I and type-II topological nodal superconductors with \(s\) -wave interaction

      , , ,
      Physical Review B
      American Physical Society (APS)

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references73

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Signatures of Majorana fermions in hybrid superconductor-semiconductor nanowire devices

          Majorana fermions are particles identical to their own antiparticles. They have been theoretically predicted to exist in topological superconductors. We report electrical measurements on InSb nanowires contacted with one normal (Au) and one superconducting electrode (NbTiN). Gate voltages vary electron density and define a tunnel barrier between normal and superconducting contacts. In the presence of magnetic fields of order 100 mT we observe bound, mid-gap states at zero bias voltage. These bound states remain fixed to zero bias even when magnetic fields and gate voltages are changed over considerable ranges. Our observations support the hypothesis of Majorana fermions in nanowires coupled to superconductors.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Classification of topological insulators and superconductors in three spatial dimensions

            We systematically study topological phases of insulators and superconductors (SCs) in 3D. We find that there exist 3D topologically non-trivial insulators or SCs in 5 out of 10 symmetry classes introduced by Altland and Zirnbauer within the context of random matrix theory. One of these is the recently introduced Z_2 topological insulator in the symplectic symmetry class. We show there exist precisely 4 more topological insulators. For these systems, all of which are time-reversal (TR) invariant in 3D, the space of insulating ground states satisfying certain discrete symmetry properties is partitioned into topological sectors that are separated by quantum phase transitions. 3 of the above 5 topologically non-trivial phases can be realized as TR invariant SCs, and in these the different topological sectors are characterized by an integer winding number defined in momentum space. When such 3D topological insulators are terminated by a 2D surface, they support a number (which may be an arbitrary non-vanishing even number for singlet pairing) of Dirac fermion (Majorana fermion when spin rotation symmetry is completely broken) surface modes which remain gapless under arbitrary perturbations that preserve the characteristic discrete symmetries. In particular, these surface modes completely evade Anderson localization. These topological phases can be thought of as 3D analogues of well known paired topological phases in 2D such as the chiral p-wave SC. In the corresponding topologically non-trivial and topologically trivial 3D phases, the wavefunctions exhibit markedly distinct behavior. When an electromagnetic U(1) gauge field and fluctuations of the gap functions are included in the dynamics, the SC phases with non-vanishing winding number possess non-trivial topological ground state degeneracies.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Paired states of fermions in two dimensions with breaking of parity and time-reversal symmetries, and the fractional quantum Hall effect

              We analyze pairing of fermions in two dimensions for fully-gapped cases with broken parity (P) and time-reversal (T), especially cases in which the gap function is an orbital angular momentum (\(l\)) eigenstate, in particular \(l=-1\) (p-wave, spinless or spin-triplet) and \(l=-2\) (d-wave, spin-singlet). For \(l\neq0\), these fall into two phases, weak and strong pairing, which may be distinguished topologically. In the cases with conserved spin, we derive explicitly the Hall conductivity for spin as the corresponding topological invariant. For the spinless p-wave case, the weak-pairing phase has a pair wavefunction that is asympototically the same as that in the Moore-Read (Pfaffian) quantum Hall state, and we argue that its other properties (edge states, quasihole and toroidal ground states) are also the same, indicating that nonabelian statistics is a {\em generic} property of such a paired phase. The strong-pairing phase is an abelian state, and the transition between the two phases involves a bulk Majorana fermion, the mass of which changes sign at the transition. For the d-wave case, we argue that the Haldane-Rezayi state is not the generic behavior of a phase but describes the asymptotics at the critical point between weak and strong pairing, and has gapless fermion excitations in the bulk. In this case the weak-pairing phase is an abelian phase which has been considered previously. In the p-wave case with an unbroken U(1) symmetry, which can be applied to the double layer quantum Hall problem, the weak-pairing phase has the properties of the 331 state, and with nonzero tunneling there is a transition to the Moore-Read phase. The effects of disorder on noninteracting quasiparticles are considered.
                Bookmark

                Author and article information

                Journal
                PRBMDO
                Physical Review B
                Phys. Rev. B
                American Physical Society (APS)
                2469-9950
                2469-9969
                January 2018
                January 23 2018
                : 97
                : 4
                Article
                10.1103/PhysRevB.97.045142
                db363b9c-a8e6-472b-ae59-56304dcdb734
                © 2018

                https://link.aps.org/licenses/aps-default-license

                History

                Comments

                Comment on this article