Inviting an author to review:
Find an author and click ‘Invite to review selected article’ near their name.
Search for authorsSearch for similar articles
22
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Reconstructing a B-cell clonal lineage. I. Statistical inference of unobserved ancestors

      research-article
      a , 1 , 2
      F1000Research
      F1000Research

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          One of the key phenomena in the adaptive immune response to infection and immunization is affinity maturation, during which antibody genes are mutated and selected, typically resulting in a substantial increase in binding affinity to the eliciting antigen. Advances in technology on several fronts have made it possible to clone large numbers of heavy-chain light-chain pairs from individual B cells and thereby identify whole sets of clonally related antibodies. These collections could provide the information necessary to reconstruct their own history - the sequence of changes introduced into the lineage during the development of the clone - and to study affinity maturation in detail. But the success of such a program depends entirely on accurately inferring the founding ancestor and the other unobserved intermediates. Given a set of clonally related immunoglobulin V-region genes, the method described here allows one to compute the posterior distribution over their possible ancestors, thereby giving a thorough accounting of the uncertainty inherent in the reconstruction.

          I demonstrate the application of this method on heavy-chain and light-chain clones, assess the reliability of the inference, and discuss the sources of uncertainty.

          Related collections

          Most cited references24

          • Record: found
          • Abstract: found
          • Article: not found

          Somatic generation of antibody diversity.

          In the genome of a germ-line cell, the genetic information for an immunoglobulin polypeptide chain is contained in multiple gene segments scattered along a chromosome. During the development of bone marrow-derived lymphocytes, these gene segments are assembled by recombination which leads to the formation of a complete gene. In addition, mutations are somatically introduced at a high rate into the amino-terminal region. Both somatic recombination and mutation contribute greatly to an increase in the diversity of antibody synthesized by a single organism.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Germline-like predecessors of broadly neutralizing antibodies lack measurable binding to HIV-1 envelope glycoproteins: Implications for evasion of immune responses and design of vaccine immunogens

            Several human monoclonal antibodies (hmAbs) including b12, 2G12, and 2F5 exhibit relatively potent and broad HIV-1-neutralizing activity. However, their elicitation in vivo by vaccine immunogens based on the HIV-1 envelope glycoprotein (Env) has not been successful. We have hypothesized that HIV-1 has evolved a strategy to reduce or eliminate the immunogenicity of the highly conserved epitopes of such antibodies by using “holes” (absence or very weak binding to these epitopes of germline antibodies that is not sufficient to initiate and/or maintain an efficient immune response) in the human germline B cell receptor (BCR) repertoire. To begin to test this hypothesis we have designed germline-like antibodies corresponding most closely to b12, 2G12, and 2F5 as well as to X5, m44, and m46 which are cross-reactive but with relatively modest neutralizing activity as natively occurring antibodies due to size and/or other effects. The germline-like X5, m44, and m46 bound with relatively high affinity to all tested Envs. In contrast, germline-like b12, 2G12, and 2F5 lacked measurable binding to Envs in an ELISA assay although the corresponding mature antibodies did. These results provide initial evidence that Env structures containing conserved vulnerable epitopes may not initiate humoral responses by binding to germline antibodies. Even if such responses are initiated by very weak binding undetectable in our assay it is likely that they will be outcompeted by responses to structures containing the epitopes of X5, m44, m46, and other antibodies that bind germline BCRs with much higher affinity/avidity. This hypothesis, if further supported by data, could contribute to our understanding of how HIV-1 evades immune responses and offer new concepts for design of effective vaccine immunogens.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              In situ studies of the primary immune response to (4-hydroxy-3- nitrophenyl)acetyl. I. The architecture and dynamics of responding cell populations

              After primary immunization with an immunogenic conjugate of (4-hydroxy- 3-nitrophenyl)acetyl, two anatomically and phenotypically distinct populations of antibody-forming cells arise in the spleen. As early as 2 d after immunization, foci of antigen-binding B cells are observed along the periphery of the periarteriolar lymphoid sheaths. These foci expand, occupying as much as 1% of the splenic volume by day 8 of the response. Later, foci grow smaller and are virtually absent from the spleen by day 14. A second responding population, germinal center B cells, appear on day 8-10 and persist at least until day 16 post- immunization. Individual foci and germinal centers represent discrete pauciclonal populations that apparently undergo somatic evolution in the course of the primary response. We suggest that foci may represent regions of predominantly interclonal competition for antigen among unmutated B cells, while germinal centers are sites of intraclonal clonal competition between mutated sister lymphocytes.
                Bookmark

                Author and article information

                Journal
                F1000Res
                F1000Res
                F1000Research
                F1000Research
                F1000Research (London, UK )
                2046-1402
                3 April 2013
                2013
                : 2
                : 103
                Affiliations
                [1 ]Department of Microbiology, Boston University School of Medicine, Boston, MA, 02118, USA
                [2 ]Department of Mathematics & Statistics, Boston University, Boston, MA, 02118, USA
                [1 ]Vanderbilt School of Medicine, Vanderbilt University, Nashville, TN, USA
                [1 ]Department of Biological Sciences, University of South Carolina, Columbia, SC, USA
                [1 ]Department of Immunobiology, King's College London School of Medicine, London, UK
                Author notes

                Competing interests: No competing interests were disclosed.

                Competing interests: No competing interests were disclosed.

                Competing interests: No competing interests were disclosed.

                Competing interests: No competing interests were disclosed.

                Article
                10.12688/f1000research.2-103.v1
                3901458
                24555054
                db45fcee-41f5-440b-80c9-7ccf1ec7816f
                Copyright: © 2013 Kepler TB

                This is an open access article distributed under the terms of the Creative Commons Attribution Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                Data associated with the article are available under the terms of the Creative Commons Zero "No rights reserved" data waiver (CC0 1.0 Public domain dedication).

                History
                : 25 March 2013
                Funding
                Funded by: NIH/NIAID
                Award ID: HHSN272201000053C
                Funded by: Bill and Melinda Gates Foundation
                This work was supported by NIH/NIAID research contract HHSN272201000053C to (TBK, PI) and a Vaccine Development Center grant in the Collaboration for AIDS Vaccine Discovery Program from the Bill and Melinda Gates Foundation (B. Haynes, PI).
                The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article
                Articles
                Genetics of the Immune System
                Leukocyte Development

                Comments

                Comment on this article