2
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Phosphosignature predicts dasatinib response in non-small cell lung cancer.

      Molecular & Cellular Proteomics : MCP
      Breast Neoplasms, drug therapy, metabolism, pathology, Carcinoma, Non-Small-Cell Lung, Cell Adhesion, Cell Line, Tumor, Cell Proliferation, drug effects, Drug Resistance, Neoplasm, Female, Gene Expression Profiling, Humans, Integrin beta4, chemistry, Lung Neoplasms, Mass Spectrometry, Phosphoproteins, analysis, Phosphorylation, Protein Kinase Inhibitors, pharmacology, Protein-Tyrosine Kinases, antagonists & inhibitors, Proteome, Pyrimidines, Thiazoles, Tumor Markers, Biological

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Targeted drugs are less toxic than traditional chemotherapeutic therapies; however, the proportion of patients that benefit from these drugs is often smaller. A marker that confidently predicts patient response to a specific therapy would allow an individual therapy selection most likely to benefit the patient. Here, we used quantitative mass spectrometry to globally profile the basal phosphoproteome of a panel of non-small cell lung cancer cell lines. The effect of the kinase inhibitor dasatinib on cellular growth was tested against the same panel. From the phosphoproteome profiles, we identified 58 phosphorylation sites, which consistently differ between sensitive and resistant cell lines. Many of the corresponding proteins are involved in cell adhesion and cytoskeleton organization. We showed that a signature of only 12 phosphorylation sites is sufficient to accurately predict dasatinib sensitivity. Four of the phosphorylation sites belong to integrin β4, a protein that mediates cell-matrix or cell-cell adhesion. The signature was validated in cross-validation and label switch experiments and in six independently profiled breast cancer cell lines. The study supports that the phosphorylation of integrin β4, as well as eight further proteins comprising the signature, are candidate biomarkers for predicting response to dasatinib in solid tumors. Furthermore, our results show that identifying predictive phosphorylation signatures from global, quantitative phosphoproteomic data is possible and can open a new path to discovering molecular markers for response prediction.

          Related collections

          Author and article information

          Comments

          Comment on this article