24
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Designing plasmonic eigenstates for optical signal transmission in planar channel devices

      Preprint

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          On-chip optoelectronic and all-optical information processing paradigms require compact implementation of signal transfer for which nanoscale surface plasmons circuitry offers relevant solutions. This work demonstrates the directional signal transmittance mediated by 2D plasmonic eigenmodes supported by crystalline cavities. Channel devices comprising two mesoscopic triangular input and output ports and sustaining delocalized, higher-order plasmon resonances in the visible to infra-red range are shown to enable the controllable transmittance between two confined entry and exit ports coupled over a distance exceeding 2 \(\mu\)m. The transmittance is attenuated by > 20dB upon rotating the incident linear polarization, thus offering a convenient switching mechanism. The optimal transmittance for a given operating wavelength depends on the geometrical design of the device that sets the spatial and spectral characteristic of the supporting delocalized mode. Our approach is highly versatile and opens the way to more complex information processing using pure plasmonic or hybrid nanophotonic architectures.

          Related collections

          Most cited references43

          • Record: found
          • Abstract: found
          • Article: not found

          Surface plasmon subwavelength optics.

          Surface plasmons are waves that propagate along the surface of a conductor. By altering the structure of a metal's surface, the properties of surface plasmons--in particular their interaction with light--can be tailored, which offers the potential for developing new types of photonic device. This could lead to miniaturized photonic circuits with length scales that are much smaller than those currently achieved. Surface plasmons are being explored for their potential in subwavelength optics, data storage, light generation, microscopy and bio-photonics.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Channel plasmon subwavelength waveguide components including interferometers and ring resonators.

            Photonic components are superior to electronic ones in terms of operational bandwidth, but the diffraction limit of light poses a significant challenge to the miniaturization and high-density integration of optical circuits. The main approach to circumvent this problem is to exploit the hybrid nature of surface plasmon polaritons (SPPs), which are light waves coupled to free electron oscillations in a metal that can be laterally confined below the diffraction limit using subwavelength metal structures. However, the simultaneous realization of strong confinement and a propagation loss sufficiently low for practical applications has long been out of reach. Channel SPP modes--channel plasmon polaritons (CPPs)--are electromagnetic waves that are bound to and propagate along the bottom of V-shaped grooves milled in a metal film. They are expected to exhibit useful subwavelength confinement, relatively low propagation loss, single-mode operation and efficient transmission around sharp bends. Our previous experiments showed that CPPs do exist and that they propagate over tens of micrometres along straight subwavelength grooves. Here we report the design, fabrication and characterization of CPP-based subwavelength waveguide components operating at telecom wavelengths: Y-splitters, Mach-Zehnder interferometers and waveguide-ring resonators. We demonstrate that CPP guides can indeed be used for large-angle bending and splitting of radiation, thereby enabling the realization of ultracompact plasmonic components and paving the way for a new class of integrated optical circuits.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              All-plasmonic Mach–Zehnder modulator enabling optical high-speed communication at the microscale

                Bookmark

                Author and article information

                Journal
                15 November 2017
                Article
                1711.05585
                dbc9c2c3-9a2e-4696-b43b-ef03ef5f79af

                http://arxiv.org/licenses/nonexclusive-distrib/1.0/

                History
                Custom metadata
                physics.optics cond-mat.mtrl-sci
                ccsd

                Comments

                Comment on this article