Inviting an author to review:
Find an author and click ‘Invite to review selected article’ near their name.
Search for authorsSearch for similar articles
15
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Natural and engineered hydroxyectoine production based on the Pseudomonas stutzeri ectABCD-ask gene cluster.

      Applied and Environmental Microbiology
      Amino Acids, Diamino, biosynthesis, genetics, Betaine, metabolism, pharmacology, Escherichia coli, Gene Expression Regulation, Bacterial, Genes, Bacterial, Industrial Microbiology, Molecular Sequence Data, Multigene Family, Polymerase Chain Reaction, Promoter Regions, Genetic, Pseudomonas stutzeri, Salinity, Trehalose

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          We report on the presence of a functional hydroxyectoine biosynthesis gene cluster, ectABCD-ask, in Pseudomonas stutzeri DSM5190(T) and evaluate the suitability of P. stutzeri DSM5190(T) for hydroxyectoine production. Furthermore, we present information on heterologous de novo production of the compatible solute hydroxyectoine in Escherichia coli. In this host, the P. stutzeri gene cluster remained under the control of its salt-induced native promoters. We also noted the absence of trehalose when hydroxyectoine genes were expressed, as well as a remarkable inhibitory effect of externally applied betaine on hydroxyectoine synthesis. The specific heterologous production rate in E. coli under the conditions employed exceeded that of the natural producer Pseudomonas stutzeri and, for the first time, enabled effective hydroxyectoine production at low salinity (2%), with the added advantage of simple product processing due to the absence of other cosolutes.

          Related collections

          Author and article information

          Comments

          Comment on this article