3
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Rapid Ecosystem Change at the Southern Limit of the Canadian Arctic, Torngat Mountains National Park

      , , , ,
      Remote Sensing
      MDPI AG

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Northern protected areas guard against habitat and species loss but are themselves highly vulnerable to environmental change due to their fixed spatial boundaries. In the low Arctic, Torngat Mountains National Park (TMNP) of Canada, widespread greening has recently occurred alongside warming temperatures and regional declines in caribou. Little is known, however, about how biophysical controls mediate plant responses to climate warming, and available observational data are limited in temporal and spatial scope. In this study, we investigated the drivers of land cover change for the 9700 km2 extent of the park using satellite remote sensing and geostatistical modelling. Random forest classification was used to hindcast and simulate land cover change for four different land cover types from 1985 to 2019 with topographic and surface reflectance imagery (Landsat archive). The resulting land cover maps, in addition to topographic and biotic variables, were then used to predict where future shrub expansion is likely to occur using a binomial regression framework. Land cover hindcasts showed a 235% increase in shrub and a 105% increase in wet vegetation cover from 1985/89 to 2015/19. Shrub cover was highly persistent and displaced wet vegetation in southern, low-elevation areas, whereas wet vegetation expanded to formerly dry, mid-elevations. The predictive model identified both biotic (initial cover class, number of surrounding shrub neighbors), and topographic variables (elevation, latitude, and distance to the coast) as strong predictors of future shrub expansion. A further 51% increase in shrub cover is expected by 2039/43 relative to 2014 reference data. Establishing long-term monitoring plots within TMNP in areas where rapid vegetation change is predicted to occur will help to validate remote sensing observations and will improve our understanding of the consequences of change for biotic and abiotic components of the tundra ecosystem, including important cultural keystone species.

          Related collections

          Most cited references72

          • Record: found
          • Abstract: not found
          • Article: not found

          Google Earth Engine: Planetary-scale geospatial analysis for everyone

            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Building Predictive Models inRUsing thecaretPackage

              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Change detection techniques

                Bookmark

                Author and article information

                Journal
                Remote Sensing
                Remote Sensing
                MDPI AG
                2072-4292
                June 2021
                May 26 2021
                : 13
                : 11
                : 2085
                Article
                10.3390/rs13112085
                dc1d55a4-f86e-4095-8e45-6de960e6e32a
                © 2021

                https://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article