2
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Recent Advances in Kinase Drug Discovery Part I: The Editors’ Take

      editorial
      1 , * , 2 , *
      International Journal of Molecular Sciences
      MDPI

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references17

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          PKIDB: A Curated, Annotated and Updated Database of Protein Kinase Inhibitors in Clinical Trials

          The number of protein kinase inhibitors (PKIs) approved worldwide continues to grow steadily, with 39 drugs approved in the period between 2001 and January 2018. PKIs on the market have been the subject of many reviews, and structure-property relationships specific to this class of drugs have been inferred. However, the large number of PKIs under development is often overlooked. In this paper, we present PKIDB (Protein Kinase Inhibitor Database), a monthly-updated database gathering approved PKIs as well as PKIs currently in clinical trials. The database compiles currently 180 inhibitors ranging from phase 0 to 4 clinical trials along with annotations extracted from seven public resources. The distribution and property ranges of standard physicochemical properties are presented. They can be used as filters to better prioritize compound selection for future screening campaigns. Interestingly, more than one-third of the kinase inhibitors violate at least one Lipinski’s rule. A Principal Component Analysis (PCA) reveals that Type-II inhibitors are mapped to a distinct chemical space as compared to orally administrated drugs as well as to other types of kinase inhibitors. Using a Principal Moment of Inertia (PMI) analysis, we show that PKIs under development tend to explore new shape territories as compared to approved PKIs. In order to facilitate the analysis of the protein space, the kinome tree has been annotated with all protein kinases being targeted by PKIs. Finally, we analyzed the pipeline of the pharmaceutical companies having PKIs on the market or still under development. We hope that this work will assist researchers in the kinase field in identifying and designing the next generation of kinase inhibitors for still untargeted kinases. The PKIDB database is freely accessible from a website at http://www.icoa.fr/pkidb and can be easily browsed through a user-friendly spreadsheet-like interface.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Thyroid Cancers: From Surgery to Current and Future Systemic Therapies through Their Molecular Identities

            Differentiated thyroid cancers (DTC) are commonly and successfully treated with total thyroidectomy plus/minus radioiodine therapy (RAI). Medullary thyroid cancer (MTC) is only treated with surgery but only intrathyroidal tumors are cured. The worst prognosis is for anaplastic (ATC) and poorly differentiated thyroid cancer (PDTC). Whenever a local or metastatic advanced disease is present, other treatments are required, varying from local to systemic therapies. In the last decade, the efficacy of the targeted therapies and, in particular, tyrosine kinase inhibitors (TKIs) has been demonstrated. They can prolong the disease progression-free survival and represent the most important therapeutic option for the treatment of advanced and progressive thyroid cancer. Currently, lenvatinib and sorafenib are the approved drugs for the treatment of RAI-refractory DTC and PDTC while advanced MTC can be treated with either cabozantinib or vandetanib. Dabrafenib plus trametinib is the only approved treatment by FDA for BRAFV600E mutated ATC. A new generation of TKIs, specifically for single altered oncogenes, is under evaluation in phase 2 and 3 clinical trials. The aim of this review was to provide an overview of the current and future treatments of thyroid cancer with regards to the advanced and progressive cases that require systemic therapies that are becoming more and more targeted on the molecular identity of the tumor.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Comparative Assessment of Protein Kinase Inhibitors in Public Databases and in PKIDB

              Since the first approval of a protein kinase inhibitor (PKI) by the Food and Drug Administration (FDA) in 2001, 55 new PKIs have reached the market, and many inhibitors are currently being evaluated in clinical trials. This is a clear indication that protein kinases still represent major drug targets for the pharmaceutical industry. In a previous work, we have introduced PKIDB, a publicly available database, gathering PKIs that have already been approved (Phase 4), as well as those currently in clinical trials (Phases 0 to 3). This database is updated frequently, and an analysis of the new data is presented here. In addition, we compared the set of PKIs present in PKIDB with the PKIs in early preclinical studies found in ChEMBL, the largest publicly available chemical database. For each dataset, the distribution of physicochemical descriptors related to drug-likeness is presented. From these results, updated guidelines to prioritize compounds for targeting protein kinases are proposed. The results of a principal component analysis (PCA) show that the PKIDB dataset is fully encompassed within all PKIs found in the public database. This observation is reinforced by a principal moments of inertia (PMI) analysis of all molecules. Interestingly, we notice that PKIs in clinical trials tend to explore new 3D chemical space. While a great majority of PKIs is located on the area of “flatland”, we find few compounds exploring the 3D structural space. Finally, a scaffold diversity analysis of the two datasets, based on frequency counts was performed. The results give insight into the chemical space of PKIs, and can guide researchers to reach out new unexplored areas. PKIDB is freely accessible from the following website: http://www.icoa.fr/pkidb.
                Bookmark

                Author and article information

                Journal
                Int J Mol Sci
                Int J Mol Sci
                ijms
                International Journal of Molecular Sciences
                MDPI
                1422-0067
                15 July 2021
                July 2021
                : 22
                : 14
                : 7560
                Affiliations
                [1 ]Department of Biology, York Biomedical Research Institute, University of York, Heslington, York YO10 5DD, UK
                [2 ]Cancer Research UK Newcastle Drug Discovery Unit, Newcastle University Centre for Cancer, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Paul O’Gorman Building, Newcastle upon Tyne NE2 4HH, UK
                Author notes
                Author information
                https://orcid.org/0000-0002-6119-676X
                Article
                ijms-22-07560
                10.3390/ijms22147560
                8306870
                34299180
                dc477b89-d354-4201-a368-6a008e0f65d2
                © 2021 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( https://creativecommons.org/licenses/by/4.0/).

                History
                : 07 July 2021
                : 13 July 2021
                Categories
                Editorial

                Molecular biology
                Molecular biology

                Comments

                Comment on this article