16
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Stretchable Hydrogel Electronics and Devices

      , , , , , ,
      Advanced Materials
      Wiley-Blackwell

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Related collections

          Most cited references29

          • Record: found
          • Abstract: not found
          • Article: not found

          Hydrogels for tissue engineering.

            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Hydrogels in Biology and Medicine: From Molecular Principles to Bionanotechnology

              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              25th Anniversary Article: A Soft Future: From Robots and Sensor Skin to Energy Harvesters

              Scientists are exploring elastic and soft forms of robots, electronic skin and energy harvesters, dreaming to mimic nature and to enable novel applications in wide fields, from consumer and mobile appliances to biomedical systems, sports and healthcare. All conceivable classes of materials with a wide range of mechanical, physical and chemical properties are employed, from liquids and gels to organic and inorganic solids. Functionalities never seen before are achieved. In this review we discuss soft robots which allow actuation with several degrees of freedom. We show that different actuation mechanisms lead to similar actuators, capable of complex and smooth movements in 3d space. We introduce latest research examples in sensor skin development and discuss ultraflexible electronic circuits, light emitting diodes and solar cells as examples. Additional functionalities of sensor skin, such as visual sensors inspired by animal eyes, camouflage, self-cleaning and healing and on-skin energy storage and generation are briefly reviewed. Finally, we discuss a paradigm change in energy harvesting, away from hard energy generators to soft ones based on dielectric elastomers. Such systems are shown to work with high energy of conversion, making them potentially interesting for harvesting mechanical energy from human gait, winds and ocean waves.
                Bookmark

                Author and article information

                Journal
                Advanced Materials
                Adv. Mater.
                Wiley-Blackwell
                09359648
                June 2016
                June 2016
                : 28
                : 22
                : 4497-4505
                Article
                10.1002/adma.201504152
                4896855
                26639322
                dcc6acb9-3e03-45df-a73e-9b4bb8713284
                © 2016

                http://doi.wiley.com/10.1002/tdm_license_1.1

                Product
                Self URI (article page): http://doi.wiley.com/10.1002/adma.201504152

                Comments

                Comment on this article