32
views
0
recommends
+1 Recommend
1 collections
    0
    shares

      To submit to Bentham Journals, please click here

      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Stress, the Autonomic Nervous System, and the Immune-kynurenine Pathway in the Etiology of Depression

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The autonomic nervous system is one of the major neural pathways activated by stress. In situations that are often associated with chronic stress, such as major depressive disorder, the sympathetic nervous system can be continuously activated without the normal counteraction of the parasympathetic nervous system. As a result, the immune system can be activated with increased levels of pro-inflammatory cytokines. These inflammatory conditions have been repeatedly observed in depression. In the search for the mechanism by which the immune system might contribute to depression, the enhanced activity of indoleamine 2,3-dioxygenase by pro-inflammatory cytokines has been suggested to play an important role. Indoleamine 2,3-dioxygenase is the first enzyme in the kynurenine pathway that converts tryptophan to kynurenine. Elevated activity of this enzyme can cause imbalances in downstream kynurenine metabolites. This imbalance can induce neurotoxic changes in the brain and create a vulnerable glial-neuronal network, which may render the brain susceptible to depression. This review focuses on the interaction between stress, the autonomic nervous system and the immune system which can cause imbalances in the kynurenine pathway, which may ultimately lead to major depressive disorder.

          Related collections

          Most cited references90

          • Record: found
          • Abstract: found
          • Article: not found

          The sympathetic nerve--an integrative interface between two supersystems: the brain and the immune system.

          The brain and the immune system are the two major adaptive systems of the body. During an immune response the brain and the immune system "talk to each other" and this process is essential for maintaining homeostasis. Two major pathway systems are involved in this cross-talk: the hypothalamic-pituitary-adrenal (HPA) axis and the sympathetic nervous system (SNS). This overview focuses on the role of SNS in neuroimmune interactions, an area that has received much less attention than the role of HPA axis. Evidence accumulated over the last 20 years suggests that norepinephrine (NE) fulfills the criteria for neurotransmitter/neuromodulator in lymphoid organs. Thus, primary and secondary lymphoid organs receive extensive sympathetic/noradrenergic innervation. Under stimulation, NE is released from the sympathetic nerve terminals in these organs, and the target immune cells express adrenoreceptors. Through stimulation of these receptors, locally released NE, or circulating catecholamines such as epinephrine, affect lymphocyte traffic, circulation, and proliferation, and modulate cytokine production and the functional activity of different lymphoid cells. Although there exists substantial sympathetic innervation in the bone marrow, and particularly in the thymus and mucosal tissues, our knowledge about the effect of the sympathetic neural input on hematopoiesis, thymocyte development, and mucosal immunity is extremely modest. In addition, recent evidence is discussed that NE and epinephrine, through stimulation of the beta(2)-adrenoreceptor-cAMP-protein kinase A pathway, inhibit the production of type 1/proinflammatory cytokines, such as interleukin (IL-12), tumor necrosis factor-alpha, and interferon-gamma by antigen-presenting cells and T helper (Th) 1 cells, whereas they stimulate the production of type 2/anti-inflammatory cytokines such as IL-10 and transforming growth factor-beta. Through this mechanism, systemically, endogenous catecholamines may cause a selective suppression of Th1 responses and cellular immunity, and a Th2 shift toward dominance of humoral immunity. On the other hand, in certain local responses, and under certain conditions, catecholamines may actually boost regional immune responses, through induction of IL-1, tumor necrosis factor-alpha, and primarily IL-8 production. Thus, the activation of SNS during an immune response might be aimed to localize the inflammatory response, through induction of neutrophil accumulation and stimulation of more specific humoral immune responses, although systemically it may suppress Th1 responses, and, thus protect the organism from the detrimental effects of proinflammatory cytokines and other products of activated macrophages. The above-mentioned immunomodulatory effects of catecholamines and the role of SNS are also discussed in the context of their clinical implication in certain infections, major injury and sepsis, autoimmunity, chronic pain and fatigue syndromes, and tumor growth. Finally, the pharmacological manipulation of the sympathetic-immune interface is reviewed with focus on new therapeutic strategies using selective alpha(2)- and beta(2)-adrenoreceptor agonists and antagonists and inhibitors of phosphodiesterase type IV in the treatment of experimental models of autoimmune diseases, fibromyalgia, and chronic fatigue syndrome.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            The increasing burden of depression

            Recent epidemiological surveys conducted in general populations have found that the lifetime prevalence of depression is in the range of 10% to 15%. Mood disorders, as defined by the World Mental Health and the Diagnostic and Statistical Manual of Mental Disorders, 4th edition, have a 12-month prevalence which varies from 3% in Japan to over 9% in the US. A recent American survey found the prevalence of current depression to be 9% and the rate of current major depression to be 3.4%. All studies of depressive disorders have stressed the importance of the mortality and morbidity associated with depression. The mortality risk for suicide in depressed patients is more than 20-fold greater than in the general population. Recent studies have also shown the importance of depression as a risk factor for cardiovascular death. The risk of cardiac mortality after an initial myocardial infarction is greater in patients with depression and related to the severity of the depressive episode. Greater severity of depressive symptoms has been found to be associated with significantly higher risk of all-cause mortality including cardiovascular death and stroke. In addition to mortality, functional impairment and disability associated with depression have been consistently reported. Depression increases the risk of decreased workplace productivity and absenteeism resulting in lowered income or unemployment. Absenteeism and presenteeism (being physically present at work but functioning suboptimally) have been estimated to result in a loss of $36.6 billion per year in the US. Worldwide projections by the World Health Organization for the year 2030 identify unipolar major depression as the leading cause of disease burden. This article is a brief overview of how depression affects the quality of life of the subject and is also a huge burden for both the family of the depressed patient and for society at large.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The concepts of stress and stress system disorders. Overview of physical and behavioral homeostasis.

              This article defines stress and related concepts and reviews their historical development. The notion of a stress system as the effector of the stress syndrome is suggested, and its physiologic and pathophysiologic manifestations are described. A new perspective on human disease states associated with dysregulation of the stress system is provided. Published original articles from human and animal studies and selected reviews. Literature was surveyed utilizing MEDLINE and the Index Medicus. Original articles from the basic science and human literature consisted entirely of controlled studies based on verified methodologies and, with the exception of the most recent studies, replicated by more than one laboratory. Many of the basic science and clinical studies had been conducted in our own laboratories and clinical research units. Reviews cited were written by acknowledged leaders in the fields of neurobiology, endocrinology, and behavior. Independent extraction and cross-referencing by the authors. Stress and related concepts can be traced as far back as written science and medicine. The stress system coordinates the generalized stress response, which takes place when a stressor of any kind exceeds a threshold. The main components of the stress system are the corticotropin-releasing hormone and locus ceruleus-norepinephrine/autonomic systems and their peripheral effectors, the pituitary-adrenal axis, and the limbs of the autonomic system. Activation of the stress system leads to behavioral and peripheral changes that improve the ability of the organism to adjust homeostasis and increase its chances for survival. There has been an exponential increase in knowledge regarding the interactions among the components of the stress system and between the stress system and other brain elements involved in the regulation of emotion, cognitive function, and behavior, as well as with the axes responsible for reproduction, growth, and immunity. This new knowledge has allowed association of stress system dysfunction, characterized by sustained hyperactivity and/or hypoactivity, to various pathophysiologic states that cut across the traditional boundaries of medical disciplines. These include a range of psychiatric, endocrine, and inflammatory disorders and/or susceptibility to such disorders. We hope that knowledge from apparently disparate fields of science and medicine integrated into a working theoretical framework will allow generation and testing of new hypotheses on the pathophysiology and diagnosis of, and therapy for, a variety of human illnesses reflecting systematic alterations in the principal effectors of the generalized stress response. We predict that pharmacologic agents capable of altering the central apparatus that governs the stress response will be useful in the treatment of many of these illnesses.
                Bookmark

                Author and article information

                Journal
                Curr Neuropharmacol
                Curr Neuropharmacol
                CN
                Current Neuropharmacology
                Bentham Science Publishers
                1570-159X
                1875-6190
                October 2016
                October 2016
                : 14
                : 7
                : 665-673
                Affiliations
                [1]Department of Psychiatry, College of Medicine, Korea University, Seoul, Republic of Korea
                Author notes
                [* ]Address correspondence to this author at the Department of Psychiatry, Korea University Ansan Hospital, College of Medicine, 123 Jeokgeum-ro, Danwon-gu, Ansan 425-021, Republic of Korea; Tel: +82-31-412-5140; Fax: +82-31-412-5144; E-mail: yongku@ 123456korea.ac.kr
                Article
                CN-14-665
                10.2174/1570159X14666151208113006
                5050399
                27640517
                dcc759ba-b300-419b-bb8d-623e5b5651d0
                © 2016 Bentham Science Publishers

                This is an open access article licensed under the terms of the Creative Commons Attribution-Non-Commercial 4.0 International Public License (CC BY-NC 4.0) (https://creativecommons.org/licenses/by-nc/4.0/legalcode), which permits unrestricted, non-commercial use, distribution and reproduction in any medium, provided the work is properly cited.

                History
                Categories
                Article

                Pharmacology & Pharmaceutical medicine
                major depressive disorder,stress,autonomic nervous system,immune system,kynurenine pathway

                Comments

                Comment on this article