36
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Gene Profile of Myeloid-Derived Suppressive Cells from the Bone Marrow of Lysosomal Acid Lipase Knock-Out Mice

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Lysosomal acid lipase (LAL) controls development and homeostasis of myeloid lineage cells. Loss of the lysosomal acid lipase (LAL) function leads to expansion of myeloid-derived suppressive cells (MDSCs) that cause myeloproliferative neoplasm.

          Methodology/Principal Findings

          Affymetrix GeneChip microarray analysis identified detailed intrinsic defects in Ly6G + myeloid lineage cells of LAL knock-out ( lal−/−) mice. Ingenuity Pathway Analysis revealed activation of the mammalian target of rapamycin (mTOR) signaling, which functions as a nutrient/energy/redox sensor, and controls cell growth, cell cycle entry, cell survival, and cell motility. Loss of the LAL function led to major alteration of large GTPase and small GTPase signal transduction pathways. lal−/− Ly6G + myeloid cells in the bone marrow showed substantial increase of cell proliferation in association with up-regulation of cyclin and cyclin-dependent kinase (cdk) genes. The epigenetic microenvironment was significantly changed due to the increased expression of multiple histone cluster genes, centromere protein genes and chromosome modification genes. Gene expression of bioenergetic pathways, including glycolysis, aerobic glycolysis, mitochondrial oxidative phosphorylation, and respiratory chain proteins, was also increased, while the mitochondrial function was impaired in lal−/− Ly6G + myeloid cells. The concentration of reactive oxygen species (ROS) was significantly increased accompanied by up-regulation of nitric oxide/ROS production genes in these cells.

          Conclusions/Significance

          This comprehensive gene profile study for the first time identifies and defines important gene pathways involved in the myeloid lineage cells towards MDSCs using lal−/− mouse model.

          Related collections

          Most cited references33

          • Record: found
          • Abstract: found
          • Article: not found

          Myeloid-derived suppressor cells: linking inflammation and cancer.

          Many cancer immunotherapies developed in experimental animals have been tested in clinical trials. Although some have shown modest clinical effects, most have not been effective. Recent studies have identified myeloid-origin cells that are potent suppressors of tumor immunity and therefore a significant impediment to cancer immunotherapy. "Myeloid-derived suppressor cells" (MDSC) accumulate in the blood, lymph nodes, and bone marrow and at tumor sites in most patients and experimental animals with cancer and inhibit both adaptive and innate immunity. MDSC are induced by tumor-secreted and host-secreted factors, many of which are proinflammatory molecules. The induction of MDSC by proinflammatory mediators led to the hypothesis that inflammation promotes the accumulation of MDSC that down-regulate immune surveillance and antitumor immunity, thereby facilitating tumor growth. This article reviews the characterization and suppressive mechanisms used by MDSC to block tumor immunity and describes the mechanisms by which inflammation promotes tumor progression through the induction of MDSC.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found

            The control of the metabolic switch in cancers by oncogenes and tumor suppressor genes.

            Cells from some tumors use an altered metabolic pattern compared with that of normal differentiated adult cells in the body. Tumor cells take up much more glucose and mainly process it through aerobic glycolysis, producing large quantities of secreted lactate with a lower use of oxidative phosphorylation that would generate more adenosine triphosphate (ATP), water, and carbon dioxide. This is the Warburg effect, which provides substrates for cell growth and division and free energy (ATP) from enhanced glucose use. This metabolic switch places the emphasis on producing intermediates for cell growth and division, and it is regulated by both oncogenes and tumor suppressor genes in a number of key cancer-producing pathways. Blocking these metabolic pathways or restoring these altered pathways could lead to a new approach in cancer treatments.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              A mammalian protein targeted by G1-arresting rapamycin-receptor complex.

              The structurally related natural products rapamycin and FK506 bind to the same intracellular receptor, FKBP12, yet the resulting complexes interfere with distinct signalling pathways. FKBP12-rapamycin inhibits progression through the G1 phase of the cell cycle in osteosarcoma, liver and T cells as well as in yeast, and interferes with mitogenic signalling pathways that are involved in G1 progression, namely with activation of the protein p70S6k (refs 5, 11-13) and cyclin-dependent kinases. Here we isolate a mammalian FKBP-rapamycin-associated protein (FRAP) whose binding to structural variants of rapamycin complexed to FKBP12 correlates with the ability of these ligands to inhibit cell-cycle progression. Peptide sequences from purified bovine FRAP were used to isolate a human cDNA clone that is highly related to the DRR1/TOR1 and DRR2/TOR2 gene products from Saccharomyces cerevisiae. Although it has not been previously demonstrated that either of the DRR/TOR gene products can bind the FKBP-rapamycin complex directly, these yeast genes have been genetically linked to a rapamycin-sensitive pathway and are thought to encode lipid kinases.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS One
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, USA )
                1932-6203
                2012
                27 February 2012
                : 7
                : 2
                : e30701
                Affiliations
                [1 ]The Center for Immunobiology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
                [2 ]IU Simon Cancer Center, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
                [3 ]Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
                [4 ]Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, United States of America
                National Cancer Institute, United States of America
                Author notes

                Conceived and designed the experiments: CY HD. Performed the experiments: XD LW HD. Analyzed the data: ND CY. Wrote the paper: CY HD.

                Article
                PONE-D-11-24069
                10.1371/journal.pone.0030701
                3288004
                22383970
                dd979a14-bb66-43e8-8038-6020816ce57f
                Yan et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
                History
                : 30 November 2011
                : 28 December 2011
                Page count
                Pages: 13
                Categories
                Research Article
                Biology
                Computational Biology
                Genomics
                Genome Analysis Tools
                Genomics
                Genome Analysis Tools
                Immunology
                Immune System
                Molecular Cell Biology
                Cellular Types
                Systems Biology

                Uncategorized
                Uncategorized

                Comments

                Comment on this article