300
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      ACE gene insertion/deletion polymorphism has a mild influence on the acute development of left ventricular dysfunction in patients with ST elevation myocardial infarction treated with primary PCI

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          We evaluated the associations among angiotensin-converting enzyme (ACE) gene insertion/deletion (I/D) polymorphism, ACE activity and post-myocardial infarction (MI) left ventricular dysfunction and acute heart failure (AHF) early after presentation with MI with ST-segment elevation (STEMI).

          Methods

          A total of 556 patients with STEMI treated by primary PCI (421 patients without AHF and 135 patients with AHF) were the study population. The activity of BNP, NT-ProBNP and ACE were measured at hospital admission and 24 h after MI onset. Left ventricular angiography was done before PCI; echocardiography was undertaken between the third and fifth day after MI.

          Results

          In comparison with the II genotypes group, the DD/ID group had a higher level of ACE activity upon hospital admission (p < 0.001). We found a significantly higher level of ACE activity in patients with moderate LV dysfunction (EF 40-54%) in comparison both with patients with preserved LV function (EF ≥55%) and with patients with severe LV dysfunction (p = 0.028). A non-significant trend towards a higher incidence of mild AHF (22.1% vs. 16.02%, p = 0,093), a significantly higher value of end-systolic volume (ESV/BSA) (30.0 ± 12.3 vs. 28.5 ± 13.0; p < 0.05) and lower EF (50.2 ± 11.1 vs. 52.7 ± 11.7; p < 0.05) in the DD/ID genotypes group was noted. Even after multiple adjustments according to multivariate models, the EF for the DD/ID group remained significantly lower (p = 0,033). The DD/ID genotypes were associated with a significantly higher risk of EF <45% (OR 2.04 [95% CI 1.28; 3.25]).

          Conclusions

          These results suggest that the I/D polymorphism of ACE is associated with the development of LV dysfunction in the acute phase after STEMI. We demonstrated for the first time an association of the low ACE activity with the severe LV dysfunction, although patients with moderate LV dysfunction had higher level ACE activity than patients with preserved LV function.

          Related collections

          Most cited references21

          • Record: found
          • Abstract: found
          • Article: not found

          A clinical trial of the angiotensin-converting-enzyme inhibitor trandolapril in patients with left ventricular dysfunction after myocardial infarction. Trandolapril Cardiac Evaluation (TRACE) Study Group.

          Treatment with angiotensin-converting-enzyme (ACE) inhibitors reduces mortality among survivors of acute myocardial infarction, but whether to use ACE inhibitors in all patients or only in selected patients is uncertain. We screened 6676 consecutive patients with 7001 myocardial infarctions confirmed by enzyme studies. A total of 2606 patients had echocardiographic evidence of left ventricular systolic dysfunction (ejection fraction, < or = 35 percent). On days 3 to 7 after infarction, 1749 patients were randomly assigned to receive oral trandolapril (876 patients) or placebo (873 patients). The duration of follow-up was 24 to 50 months. During the study period, 304 patients (34.7 percent) in the trandolapril group died, as compared with 369 (42.3 percent) in the placebo group (P = 0.001). The relative risk of death in the trandolapril group, as compared with the placebo group, was 0.78 (95 percent confidence interval, 0.67 to 0.91). Trandolapril also reduced the risk of death from cardiovascular causes (relative risk, 0.75; 95 percent confidence interval, 0.63 to 0.89; P = 0.001) and sudden death (relative risk, 0.76; 95 percent confidence interval, 0.59 to 0.98; P = 0.03). Progression to severe heart failure was less frequent in the trandolapril group (relative risk, 0.71; 95 percent confidence interval, 0.56 to 0.89; P = 0.003). In contrast, the risk of recurrent myocardial infarction (fatal or nonfatal) was not significantly reduced (relative risk, 0.86; 95 percent confidence interval, 0.66 to 1.13; P = 0.29). Long-term treatment with trandolapril in patients with reduced left ventricular function soon after myocardial infarction significantly reduced the risk of overall mortality, mortality from cardiovascular causes, sudden death, and the development of severe heart failure. That mortality was reduced in a randomized study enrolling 25 percent of consecutive patients screened should encourage the selective use of ACE inhibition after myocardial infarction.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            ISIS-4: A randomised factorial trial assessing early oral captopril, oral mononitrate, and intravenous magnesium sulphate in 58 050 patients with suspected acute myocardial infarction

            (1995)
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Evidence, from combined segregation and linkage analysis, that a variant of the angiotensin I-converting enzyme (ACE) gene controls plasma ACE levels.

              The hypothesis of a genetic control of plasma angiotensin I-converting enzyme (ACE) level has been suggested both by segregation analysis and by the identification of an insertion/deletion (I/D) polymorphism of the ACE gene, a polymorphism contributing much to the variability of ACE level. To elucidate whether the I/D polymorphism was directly involved in the genetic regulation, plasma ACE activity and genotype for the I/D polymorphism were both measured in a sample of 98 healthy nuclear families. The pattern of familial correlations of ACE level was compatible with a zero correlation between spouses and equal parent-offspring and sib-sib correlations (.24 +/- .04). A segregation analysis indicated that this familial resemblance could be entirely explained by the transmission of a codominant major gene. The I/D polymorphism was associated with marked differences of ACE levels, although these differences were less pronounced than those observed in the segregation analysis. After adjustment for the polymorphism effects, the residual heritability (.280 +/- .096) was significant. Finally, a combined segregation and linkage analysis provided evidence that the major-gene effect was due to a variant of the ACE gene, in strong linkage disequilibrium with the I/D polymorphism. The marker allele I appeared always associated with the major-gene allele s characterized by lower ACE levels. The frequency of allele I was .431 +/- .025, and that of major allele s was .557 +/- .041. The major gene had codominant effects equal to 1.3 residual SDs and accounted for 44% of the total variability of ACE level, as compared with 28% for the I/D polymorphism.(ABSTRACT TRUNCATED AT 250 WORDS)
                Bookmark

                Author and article information

                Journal
                BMC Cardiovasc Disord
                BMC Cardiovascular Disorders
                BioMed Central
                1471-2261
                2010
                17 December 2010
                : 10
                : 60
                Affiliations
                [1 ]Cardiology Department, Faculty Hospital Brno, Jihlavska 20, Brno 625 00, Czech Republic
                [2 ]Institut of Pathophysiology, Medical Faculty, Masaryk University, Kamenice 753/5, Brno 625 00, Czech Republic
                [3 ]Institute of Biostatistics and Analyses, Masaryk University, Kamenice 126/3, Brno 625 00, Czech Republic
                [4 ]Institut of Biochemisty, Medical Faculty, Masaryk University, Kamenice 753/5, Brno 625 00, Czech Republic
                Article
                1471-2261-10-60
                10.1186/1471-2261-10-60
                3022786
                21162760
                de502ff2-ce5c-472d-8633-592444b0c63c
                Copyright ©2010 Parenica et al; licensee BioMed Central Ltd.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License (<url>http://creativecommons.org/licenses/by/2.0</url>), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 16 April 2010
                : 17 December 2010
                Categories
                Research Article

                Cardiovascular Medicine
                Cardiovascular Medicine

                Comments

                Comment on this article