14
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Prepubertal exposure to commercial formulation of the herbicide glyphosate alters testosterone levels and testicular morphology.

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Glyphosate is a herbicide widely used to kill weeds both in agricultural and non-agricultural landscapes. Its reproductive toxicity is related to the inhibition of a StAR protein and an aromatase enzyme, which causes an in vitro reduction in testosterone and estradiol synthesis. Studies in vivo about this herbicide effects in prepubertal Wistar rats reproductive development were not performed at this moment. Evaluations included the progression of puberty, body development, the hormonal production of testosterone, estradiol and corticosterone, and the morphology of the testis. Results showed that the herbicide (1) significantly changed the progression of puberty in a dose-dependent manner; (2) reduced the testosterone production, in semineferous tubules' morphology, decreased significantly the epithelium height (P < 0.001; control = 85.8 +/- 2.8 microm; 5 mg/kg = 71.9 +/- 5.3 microm; 50 mg/kg = 69.1 +/- 1.7 microm; 250 mg/kg = 65.2 +/- 1.3 microm) and increased the luminal diameter (P < 0.01; control = 94.0 +/- 5.7 microm; 5 mg/kg = 116.6 +/- 6.6 microm; 50 mg/kg = 114.3 +/- 3.1 microm; 250 mg/kg = 130.3 +/- 4.8 microm); (4) no difference in tubular diameter was observed; and (5) relative to the controls, no differences in serum corticosterone or estradiol levels were detected, but the concentrations of testosterone serum were lower in all treated groups (P < 0.001; control = 154.5 +/- 12.9 ng/dL; 5 mg/kg = 108.6 +/- 19.6 ng/dL; 50 mg/dL = 84.5 +/- 12.2 ng/dL; 250 mg/kg = 76.9 +/- 14.2 ng/dL). These results suggest that commercial formulation of glyphosate is a potent endocrine disruptor in vivo, causing disturbances in the reproductive development of rats when the exposure was performed during the puberty period.

          Related collections

          Most cited references20

          • Record: found
          • Abstract: found
          • Article: not found

          Safety evaluation and risk assessment of the herbicide Roundup and its active ingredient, glyphosate, for humans.

          Reviews on the safety of glyphosate and Roundup herbicide that have been conducted by several regulatory agencies and scientific institutions worldwide have concluded that there is no indication of any human health concern. Nevertheless, questions regarding their safety are periodically raised. This review was undertaken to produce a current and comprehensive safety evaluation and risk assessment for humans. It includes assessments of glyphosate, its major breakdown product [aminomethylphosphonic acid (AMPA)], its Roundup formulations, and the predominant surfactant [polyethoxylated tallow amine (POEA)] used in Roundup formulations worldwide. The studies evaluated in this review included those performed for regulatory purposes as well as published research reports. The oral absorption of glyphosate and AMPA is low, and both materials are eliminated essentially unmetabolized. Dermal penetration studies with Roundup showed very low absorption. Experimental evidence has shown that neither glyphosate nor AMPA bioaccumulates in any animal tissue. No significant toxicity occurred in acute, subchronic, and chronic studies. Direct ocular exposure to the concentrated Roundup formulation can result in transient irritation, while normal spray dilutions cause, at most, only minimal effects. The genotoxicity data for glyphosate and Roundup were assessed using a weight-of-evidence approach and standard evaluation criteria. There was no convincing evidence for direct DNA damage in vitro or in vivo, and it was concluded that Roundup and its components do not pose a risk for the production of heritable/somatic mutations in humans. Multiple lifetime feeding studies have failed to demonstrate any tumorigenic potential for glyphosate. Accordingly, it was concluded that glyphosate is noncarcinogenic. Glyphosate, AMPA, and POEA were not teratogenic or developmentally toxic. There were no effects on fertility or reproductive parameters in two multigeneration reproduction studies with glyphosate. Likewise there were no adverse effects in reproductive tissues from animals treated with glyphosate, AMPA, or POEA in chronic and/or subchronic studies. Results from standard studies with these materials also failed to show any effects indicative of endocrine modulation. Therefore, it is concluded that the use of Roundup herbicide does not result in adverse effects on development, reproduction, or endocrine systems in humans and other mammals. For purposes of risk assessment, no-observed-adverse-effect levels (NOAELs) were identified for all subchronic, chronic, developmental, and reproduction studies with glyphosate, AMPA, and POEA. Margins-of-exposure for chronic risk were calculated for each compound by dividing the lowest applicable NOAEL by worst-case estimates of chronic exposure. Acute risks were assessed by comparison of oral LD50 values to estimated maximum acute human exposure. It was concluded that, under present and expected conditions of use, Roundup herbicide does not pose a health risk to humans.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Differential Effects of Glyphosate and Roundup on Human Placental Cells and Aromatase

            Roundup is a glyphosate-based herbicide used worldwide, including on most genetically modified plants that have been designed to tolerate it. Its residues may thus enter the food chain, and glyphosate is found as a contaminant in rivers. Some agricultural workers using glyphosate have pregnancy problems, but its mechanism of action in mammals is questioned. Here we show that glyphosate is toxic to human placental JEG3 cells within 18 hr with concentrations lower than those found with agricultural use, and this effect increases with concentration and time or in the presence of Roundup adjuvants. Surprisingly, Roundup is always more toxic than its active ingredient. We tested the effects of glyphosate and Roundup at lower nontoxic concentrations on aromatase, the enzyme responsible for estrogen synthesis. The glyphosate-based herbicide disrupts aromatase activity and mRNA levels and interacts with the active site of the purified enzyme, but the effects of glyphosate are facilitated by the Roundup formulation in microsomes or in cell culture. We conclude that endocrine and toxic effects of Roundup, not just glyphosate, can be observed in mammals. We suggest that the presence of Roundup adjuvants enhances glyphosate bioavailability and/or bioaccumulation.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Aquatic toxicity of glyphosate-based formulations: comparison between different organisms and the effects of environmental factors.

              Glyphosate-based herbicides (e.g. Roundup) are extensively used in the aquatic environment, but there is a paucity of data on the toxicity of the formulated products and the influences by environmental factors. In this study, the acute toxicity of technical-grade glyphosate acid, isopropylamine (IPA) salt of glyphosate, Roundup and its surfactant polyoxyethylene amine (POEA) to Microtox bacterium (Vibrio fischeri), microalgae (Selenastrum capricornutum and Skeletonema costatum), protozoa (Tetrahymena pyriformis and Euplotes vannus) and crustaceans (Ceriodaphnia dubia and Acartia tonsa) was examined and the relative toxicity contributions of POEA to Roundup were calculated. The effects of four environmental factors (temperature, pH, suspended sediment and algal food concentrations) on the acute toxicity of Roundup to C. dubia were also examined. Generally, the toxicity order of the chemicals was: POEA>Roundup>glyphosate acid>IPA salt of glyphosate, while the toxicity of glyphosate acid was mainly due to its high acidity. Microtox bacterium and protozoa had similar sensitivities towards Roundup toxicity (i.e. IC50 from 23.5 to 29.5 mg AE/l). In contrast, microalgae and crustaceans were 4-5 folds more sensitive to Roundup toxicity than bacteria and protozoa. Except photosynthetic microalgae, POEA accounted for more than 86% of Roundup toxicity and the toxicity contribution of POEA was shown to be species-dependent. Increase in pH (6-9) and increase of suspended sediment concentration (0-200 mg/l) significantly increased the toxicity of Roundup to C. dubia, but there were no significant effects due to temperature change and food addition.
                Bookmark

                Author and article information

                Journal
                Arch. Toxicol.
                Archives of toxicology
                1432-0738
                0340-5761
                Apr 2010
                : 84
                : 4
                Affiliations
                [1 ] Department of Animal Reproduction, Hormonal Laboratory Dosages, Veterinary Medicine School, University of Sao Paulo, Sao Paulo, Brazil. reromano@usp.br
                Article
                10.1007/s00204-009-0494-z
                20012598
                de56555c-d1f8-4e21-98ac-1fc038ffe3ac
                History

                Comments

                Comment on this article