0
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      High Efficiency RNA Extraction From Sperm Cells Using Guanidinium Thiocyanate Supplemented With Tris(2-Carboxyethyl)Phosphine

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The extraction of high-quality ribonucleic acid (RNA) from tissues and cells is a key step in many biological assays. Guanidinium thiocyanate-phenol-chloroform (AGPC) is a widely used and efficient method to obtain pure RNA from most tissues and cells. However, it is not efficient with some cells like sperm cells because they are resistant to chaotropic lysis solutions containing guanidinium thiocyanate such as Buffer RLT+ and Trizol. Here, we show that disulfide bonds are responsible for the chemical resistance of sperm cells to RNA extraction reagents. We show that while β-mercaptoethanol (βME) can increase sperm lysis in Buffer RLT+, it has no effect in Trizol and leaves sperm cells intact. We measured the reduction of disulfide bonds in 2,2′-dithiodipyridine (DTDP) and observed that βME has a pH-dependent activity in chaotropic solutions, suggesting that pH is a limiting factor. We identified tris(2-carboxyethyl)phosphine (TCEP) as an efficient lysis enhancer of AGPC solutions that can retain reducing activity even at acidic pH. Trizol supplemented with TCEP allows the complete and rapid lysis of sperm cells, increasing RNA yield by 100-fold and resulting in RNA with optimal quality for reverse transcription and polymerase chain reaction. Our findings highlight the importance of efficient cell lysis and extraction of various macromolecules for bulk and single-cell assays, and can be applied to other lysis-resistant cells and vesicles, thereby optimizing the amount of required starting material and animals.

          Related collections

          Most cited references50

          • Record: found
          • Abstract: found
          • Article: not found

          The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments.

          Currently, a lack of consensus exists on how best to perform and interpret quantitative real-time PCR (qPCR) experiments. The problem is exacerbated by a lack of sufficient experimental detail in many publications, which impedes a reader's ability to evaluate critically the quality of the results presented or to repeat the experiments. The Minimum Information for Publication of Quantitative Real-Time PCR Experiments (MIQE) guidelines target the reliability of results to help ensure the integrity of the scientific literature, promote consistency between laboratories, and increase experimental transparency. MIQE is a set of guidelines that describe the minimum information necessary for evaluating qPCR experiments. Included is a checklist to accompany the initial submission of a manuscript to the publisher. By providing all relevant experimental conditions and assay characteristics, reviewers can assess the validity of the protocols used. Full disclosure of all reagents, sequences, and analysis methods is necessary to enable other investigators to reproduce results. MIQE details should be published either in abbreviated form or as an online supplement. Following these guidelines will encourage better experimental practice, allowing more reliable and unequivocal interpretation of qPCR results.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Unique features of long non-coding RNA biogenesis and function.

            Long non-coding RNAs (lncRNAs) are a diverse class of RNAs that engage in numerous biological processes across every branch of life. Although initially discovered as mRNA-like transcripts that do not encode proteins, recent studies have revealed features of lncRNAs that further distinguish them from mRNAs. In this Review, we describe special events in the lifetimes of lncRNAs - before, during and after transcription - and discuss how these events ultimately shape the unique characteristics and functional roles of lncRNAs.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              RNA delivery by extracellular vesicles in mammalian cells and its applications

              The term ‘extracellular vesicles’ refers to a heterogeneous population of vesicular bodies of cellular origin that derive either from the endosomal compartment (exosomes) or as a result of shedding from the plasma membrane (microvesicles, oncosomes and apoptotic bodies). Extracellular vesicles carry a variety of cargo, including RNAs, proteins, lipids and DNA, which can be taken up by other cells, both in the direct vicinity of the source cell and at distant sites in the body via biofluids, and elicit a variety of phenotypic responses. Owing to their unique biology and roles in cell–cell communication, extracellular vesicles have attracted strong interest, which is further enhanced by their potential clinical utility. Because extracellular vesicles derive their cargo from the contents of the cells that produce them, they are attractive sources of biomarkers for a variety of diseases. Furthermore, studies demonstrating phenotypic effects of specific extracellular vesicle-associated cargo on target cells have stoked interest in extracellular vesicles as therapeutic vehicles. There is particularly strong evidence that the RNA cargo of extracellular vesicles can alter recipient cell gene expression and function. During the past decade, extracellular vesicles and their RNA cargo have become better defined, but many aspects of extracellular vesicle biology remain to be elucidated. These include selective cargo loading resulting in substantial differences between the composition of extracellular vesicles and source cells; heterogeneity in extracellular vesicle size and composition; and undefined mechanisms for the uptake of extracellular vesicles into recipient cells and the fates of their cargo. Further progress in unravelling the basic mechanisms of extracellular vesicle biogenesis, transport, and cargo delivery and function is needed for successful clinical implementation. This Review focuses on the current state of knowledge pertaining to packaging, transport and function of RNAs in extracellular vesicles and outlines the progress made thus far towards their clinical applications.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Cell Dev Biol
                Front Cell Dev Biol
                Front. Cell Dev. Biol.
                Frontiers in Cell and Developmental Biology
                Frontiers Media S.A.
                2296-634X
                21 April 2021
                2021
                : 9
                : 648274
                Affiliations
                Laboratory of Neuroepigenetics, Brain Research Institute, Medical Faculty of the University of Zurich, and Institute for Neuroscience, Department of Health Science and Technology of the ETH Zurich , Zurich, Switzerland
                Author notes

                Edited by: Chih-kuan Tung, North Carolina Agricultural and Technical State University, United States

                Reviewed by: Terje Raudsepp, Texas A&M University, United States; Tawin Iempridee, National Nanotechnology Center, Thailand

                *Correspondence: Isabelle M. Mansuy, imansuy@ 123456ethz.ch ; mansuy@ 123456hifo.uzh.ch

                This article was submitted to Cell Growth and Division, a section of the journal Frontiers in Cell and Developmental Biology

                Article
                10.3389/fcell.2021.648274
                8097045
                de614991-ebe5-4f0b-8846-e140ba3c2dbc
                Copyright © 2021 Roszkowski and Mansuy.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 31 December 2020
                : 30 March 2021
                Page count
                Figures: 6, Tables: 1, Equations: 0, References: 50, Pages: 11, Words: 0
                Funding
                Funded by: Universität Zürich 10.13039/501100006447
                Funded by: Eidgenössische Technische Hochschule Zürich 10.13039/501100003006
                Award ID: ETH-10 15-2
                Funded by: Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung 10.13039/501100001711
                Award ID: 31003A_175742/1
                Categories
                Cell and Developmental Biology
                Methods

                sperm cell,rna,lysis and extraction,mouse,disulfide bond,tcep,guanidinium thiocyanate,ph

                Comments

                Comment on this article