12
views
0
recommends
+1 Recommend
1 collections
    0
    shares

      Publish your biodiversity research with us!

      Submit your article here.

      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Morphologic and molecular data help adopting the insect-pathogenic nephridiophagids (Nephridiophagidae) among the early diverging fungal lineages, close to the Chytridiomycota

      , , , , , , ,
      MycoKeys
      Pensoft Publishers

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Nephridiophagids are poorly known unicellular eukaryotes, previously of uncertain systematic position, that parasitize the Malpighian tubules of insects. Their life cycle includes merogony with multinucleate plasmodia and sporogony leading to small, uninucleate spores. We examined the phylogenetic affiliations of three species of Nephridiophaga, including one new species, Nephridiophaga maderae, from the Madeira cockroach (Leucophaea maderae). In addition to the specific host, the new species differs from those already known by the size of the spores and by the number of spores within the sporogenic plasmodium. The inferred phylogenetic analyses strongly support a placement of the nephridiophagids in the fungal kingdom near its root and with a close, but unresolved, relationship to the chytids (Chytridiomycota). We found evidence for the nephridiophagidean speciation as being strongly coupled to host speciation.

          Related collections

          Most cited references41

          • Record: found
          • Abstract: found
          • Article: not found

          Bayesian phylogenetic analysis of combined data.

          The recent development of Bayesian phylogenetic inference using Markov chain Monte Carlo (MCMC) techniques has facilitated the exploration of parameter-rich evolutionary models. At the same time, stochastic models have become more realistic (and complex) and have been extended to new types of data, such as morphology. Based on this foundation, we developed a Bayesian MCMC approach to the analysis of combined data sets and explored its utility in inferring relationships among gall wasps based on data from morphology and four genes (nuclear and mitochondrial, ribosomal and protein coding). Examined models range in complexity from those recognizing only a morphological and a molecular partition to those having complex substitution models with independent parameters for each gene. Bayesian MCMC analysis deals efficiently with complex models: convergence occurs faster and more predictably for complex models, mixing is adequate for all parameters even under very complex models, and the parameter update cycle is virtually unaffected by model partitioning across sites. Morphology contributed only 5% of the characters in the data set but nevertheless influenced the combined-data tree, supporting the utility of morphological data in multigene analyses. We used Bayesian criteria (Bayes factors) to show that process heterogeneity across data partitions is a significant model component, although not as important as among-site rate variation. More complex evolutionary models are associated with more topological uncertainty and less conflict between morphology and molecules. Bayes factors sometimes favor simpler models over considerably more parameter-rich models, but the best model overall is also the most complex and Bayes factors do not support exclusion of apparently weak parameters from this model. Thus, Bayes factors appear to be useful for selecting among complex models, but it is still unclear whether their use strikes a reasonable balance between model complexity and error in parameter estimates.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Multiorganismal insects: diversity and function of resident microorganisms.

            All insects are colonized by microorganisms on the insect exoskeleton, in the gut and hemocoel, and within insect cells. The insect microbiota is generally different from microorganisms in the external environment, including ingested food. Specifically, certain microbial taxa are favored by the conditions and resources in the insect habitat, by their tolerance of insect immunity, and by specific mechanisms for their transmission. The resident microorganisms can promote insect fitness by contributing to nutrition, especially by providing essential amino acids, B vitamins, and, for fungal partners, sterols. Some microorganisms protect their insect hosts against pathogens, parasitoids, and other parasites by synthesizing specific toxins or modifying the insect immune system. Priorities for future research include elucidation of microbial contributions to detoxification, especially of plant allelochemicals in phytophagous insects, and resistance to pathogens; as well as their role in among-insect communication; and the potential value of manipulation of the microbiota to control insect pests.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              The magnitude of fungal diversity: the 1.5 million species estimate revisited

                Bookmark

                Author and article information

                Journal
                MycoKeys
                MC
                Pensoft Publishers
                1314-4049
                1314-4057
                July 10 2017
                July 10 2017
                : 25
                : 31-50
                Article
                10.3897/mycokeys.25.12446
                de881619-19ab-465f-8d73-3edd19422b3f
                © 2017

                http://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article

                scite_

                Similar content151

                Cited by7

                Most referenced authors777