0
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Piezocatalyzed Decarboxylative Acylation of Quinoxalin-2(1 H)-ones Using Ball Milling

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references69

          • Record: found
          • Abstract: found
          • Article: not found

          Mechanochemical organic synthesis.

          Recently, mechanical milling using a mixer mill or planetary mill has been fruitfully utilized in organic synthesis under solvent-free conditions. This review article provides a comprehensive overview of various solvent-free mechanochemical organic reactions, including metal-mediated or -catalyzed reactions, condensation reactions, nucleophilic additions, cascade reactions, Diels-Alder reactions, oxidations, reductions, halogenation/aminohalogenation, etc. The ball milling technique has also been applied to the synthesis of calixarenes, rotaxanes and cage compounds, asymmetric synthesis as well as the transformation of biologically active compounds.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Ball milling in organic synthesis: solutions and challenges.

            During the last decade numerous protocols have been published using the method of ball milling for synthesis all over the field of organic chemistry. However, compared to other methods leaving their marks on the road to sustainable synthesis (e.g. microwave, ultrasound, ionic liquids) chemistry in ball mills is rather underrepresented in the knowledge of organic chemists. Especially, in the last three years the interest in this technique raised continuously, culminating in several high-quality synthetic procedures covering the whole range of organic synthesis. Thus, the present tutorial review will be focused on the highlights using this method of energy transfer and energy dissipation. The central aim is to motivate researchers to take notice of ball mills as chemical reactors, implementing this technique in everyday laboratory use and thus, pave the ground for future activities in this interdisciplinary field of research.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Influence of pH on the formation of sulfate and hydroxyl radicals in the UV/peroxymonosulfate system.

              The influence of pH on the degradation of refractory organics (benzoic acid, BA) in UV(254 nm)/Peroxymonosulfate (UV/PMS) system was investigated. The degradation of BA was significantly enhanced at the pH range of 8-11, which could not be explained only by the generally accepted theory that SO(4)(•-) was converted to HO(•) at higher pH. A hypothesis was proposed that the rate of PMS photolysis into HO(•) and SO(4)(•-) increased with pH. The hypothesis was evidenced by the measured increase of apparent-molar absorption coefficient of PMS (ε(PMS), 13.8-149.5 M(-1)·cm(-1)) and photolysis rate of PMS with pH, and further proved by the increased quasi-stationary concentrations of both HO(•) and SO(4)(•-) at the pH range of 8-10. The formation of HO(•) and SO(4)(•-) in the UV/PMS system was confirmed mainly from the cooperation of the photolysis of PMS, the decay of peroxomonosulfate radical (SO(5)(•-)) and the conversion of SO(4)(•-) to HO(•) by simulation and experimental results. Additionally, the apparent quantum yield for SO(4)(•-) in the UV/PMS system was calculated as 0.52 ± 0.01 at pH 7. The conclusions above as well as the general kinetic expressions given might provide some references for the UV/PMS applications.
                Bookmark

                Author and article information

                Contributors
                Journal
                ACS Sustainable Chemistry & Engineering
                ACS Sustainable Chem. Eng.
                American Chemical Society (ACS)
                2168-0485
                2168-0485
                January 23 2023
                January 11 2023
                January 23 2023
                : 11
                : 3
                : 910-920
                Affiliations
                [1 ]Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou, Henan, China 450001
                Article
                10.1021/acssuschemeng.2c04720
                deea7ca8-00a8-4f76-8854-b8f785b5ae07
                © 2023

                https://doi.org/10.15223/policy-029

                https://doi.org/10.15223/policy-037

                https://doi.org/10.15223/policy-045

                History

                Comments

                Comment on this article