21
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Olaparib significantly delays photoreceptor loss in a model for hereditary retinal degeneration

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The enzyme poly-ADP-ribose-polymerase (PARP) mediates DNA-repair and rearrangements of the nuclear chromatin. Generally, PARP activity is thought to promote cell survival and in recent years a number of PARP inhibitors have been clinically developed for cancer treatment. Paradoxically, PARP activity is also connected to many diseases including the untreatable blinding disease Retinitis Pigmentosa (RP), where PARP activity appears to drive the pathogenesis of photoreceptor loss. We tested the efficacy of three different PARP inhibitors to prevent photoreceptor loss in the rd1 mouse model for RP. In retinal explant cultures in vitro, olaparib had strong and long-lasting photoreceptor neuroprotective capacities. We demonstrated target engagement by showing that olaparib reduced photoreceptor accumulation of poly-ADP-ribosylated proteins. Remarkably, olaparib also reduced accumulation of cyclic-guanosine-monophosphate (cGMP), a characteristic marker for photoreceptor degeneration. Moreover, intravitreal injection of olaparib in rd1 animals diminished PARP activity and increased photoreceptor survival, confirming in vivo neuroprotection. This study affirms the role of PARP in inherited retinal degeneration and for the first time shows that a clinically approved PARP inhibitor can prevent photoreceptor degeneration in an RP model. The wealth of human clinical data available for olaparib highlights its strong potential for a rapid clinical translation into a novel RP treatment.

          Related collections

          Most cited references31

          • Record: found
          • Abstract: found
          • Article: not found

          Parthanatos: mitochondrial-linked mechanisms and therapeutic opportunities.

          Cells die by a variety of mechanisms. Terminally differentiated cells such as neurones die in a variety of disorders, in part, via parthanatos, a process dependent on the activity of poly (ADP-ribose)-polymerase (PARP). Parthanatos does not require the mediation of caspases for its execution, but is clearly mechanistically dependent on the nuclear translocation of the mitochondrial-associated apoptosis-inducing factor (AIF). The nuclear translocation of this otherwise beneficial mitochondrial protein, occasioned by poly (ADP-ribose) (PAR) produced through PARP overactivation, causes large-scale DNA fragmentation and chromatin condensation, leading to cell death. This review describes the multistep course of parthanatos and its dependence on PAR signalling and nuclear AIF translocation. The review also discusses potential targets in the parthanatos cascade as promising avenues for the development of novel, disease-modifying, therapeutic agents. © 2013 The British Pharmacological Society.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Retinal degeneration in the rd mouse is caused by a defect in the beta subunit of rod cGMP-phosphodiesterase.

            Mice homozygous for the rd mutation display hereditary retinal degeneration and the classic rd lines serve as a model for human retinitis pigmentosa. In affected animals the retinal rod photoreceptor cells begin degenerating at about postnatal day 8, and by four weeks no photoreceptors are left. Degeneration is preceded by accumulation of cyclic GMP in the retina and is correlated with deficient activity of the rod photoreceptor cGMP-phosphodiesterase. We have recently isolated a candidate complementary DNA for the rd gene from a mouse retinal library and completed the characterization of cDNAs encoding all subunits of bovine photoreceptor phosphodiesterase. The candidate cDNA shows strong homology with a cDNA encoding the bovine phosphodiesterase beta subunit. Here we present evidence that the candidate cDNA is the murine homologue of bovine phosphodiesterase beta cDNA. We conclude that the mouse rd locus encodes the rod photoreceptor cGMP-phosphodiesterase beta subunit.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Epigenetic regulatory functions of DNA modifications: 5-methylcytosine and beyond

              The chemical modification of DNA bases plays a key role in epigenetic gene regulation. While much attention has been focused on the classical epigenetic mark, 5-methylcytosine, the field garnered increased interest through the recent discovery of additional modifications. In this review, we focus on the epigenetic regulatory roles of DNA modifications in animals. We present the symmetric modification of 5-methylcytosine on CpG dinucleotide as a key feature, because it permits the inheritance of methylation patterns through DNA replication. However, the distribution patterns of cytosine methylation are not conserved in animals and independent molecular functions will likely be identified. Furthermore, the discovery of enzymes that catalyse the hydroxylation of 5-methylcytosine to 5-hydroxymethylcytosine not only identified an active demethylation pathway, but also a candidate for a new epigenetic mark associated with activated transcription. Most recently, N6-methyladenine was described as an additional eukaryotic DNA modification with epigenetic regulatory potential. Interestingly, this modification is also present in genomes that lack canonical cytosine methylation patterns, suggesting independent functions. This newfound diversity of DNA modifications and their potential for combinatorial interactions indicates that the epigenetic DNA code is substantially more complex than previously thought.
                Bookmark

                Author and article information

                Journal
                Sci Rep
                Sci Rep
                Scientific Reports
                Nature Publishing Group
                2045-2322
                22 December 2016
                2016
                : 6
                : 39537
                Affiliations
                [1 ]Institute for Ophthalmic Research , Tuebingen, Germany
                [2 ]Graduate Training Center of Neuroscience , Tuebingen, Germany
                [3 ]Department of Medical Genetics, Erciyes University , Kayseri, Turkey
                [4 ]School of Pharmacy, University of Eastern Finland , Kuopio, Finland
                [5 ]Centre for Drug Research, Division of Pharmaceutical Biosciences, University of Helsinki , Helsinki, Finland
                [6 ]Hôpital Ophtalmique Jules Gonin , Lausanne, Switzerland
                Author notes
                [*]

                These authors contributed equally to this work.

                Article
                srep39537
                10.1038/srep39537
                5177898
                28004814
                df1cd05e-2e9e-4709-aa57-70a981b012e6
                Copyright © 2016, The Author(s)

                This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

                History
                : 08 August 2016
                : 24 November 2016
                Categories
                Article

                Uncategorized
                Uncategorized

                Comments

                Comment on this article