8
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Induction of Defense Gene Expression and the Resistance of Date Palm to Fusarium oxysporum f. sp. Albedinis in Response to Alginate Extracted from Bifurcaria bifurcata

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          In many African countries, the Bayoud is a common disease spread involving the fungus Fusarium oxusporum f. sp. albedinis (Foa). The induction of plant natural defenses through the use of seaweed polysaccharides to help plants against pathogens is currently a biological and ecological approach that is gaining more and more importance. In the present study, we used alginate, a natural polysaccharide extracted from a brown algae Bifurcaria bifurcata, to activate date palm defenses, which involve phenylalanine ammonia-lyase (PAL), a key enzyme of phenylpropanoid metabolism. The results obtained showed that at low concentration (1 g·L−1), alginate stimulated PAL activity in date palm roots 5 times more compared to the negative control (water-treated) after 24 h following treatment and 2.5 times more compared to the laminarin used as a positive stimulator of plant natural defenses (positive control of induction). Using qRT-PCR, the expression of a selection of genes involved in three different levels of defense mechanisms known to be involved in response to biotic stresses were investigated. The results showed that, generally, the PAL gene tested and the genes encoding enzymes involved in early oxidative events (SOD and LOX) were overexpressed in the alginate-treated plants compared to their levels in the positive and negative controls. POD and PR protein genes selected encoding β-(1,3)-glucanases and chitinases in this study did not show any significant difference between treatments; suggesting that other genes encoding POD and PR proteins that were not selected may be involved. After 17 weeks following the inoculation of the plants with the pathogen Foa, treatment with alginate reduced the mortality rate by up to 80% compared to the rate in control plants (non-elicited) and plants pretreated with laminarin, which agrees with the induction of defense gene expression and the stimulation of natural defenses in date palm with alginate after 24 h. These results open promising prospects for the use of alginate in agriculture as an inducer that triggers immunity of plants against telluric pathogens in general and of date palm against Fusarium oxysporum f. sp. albedinis in particular.

          Related collections

          Most cited references73

          • Record: found
          • Abstract: found
          • Article: not found

          Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method.

          The two most commonly used methods to analyze data from real-time, quantitative PCR experiments are absolute quantification and relative quantification. Absolute quantification determines the input copy number, usually by relating the PCR signal to a standard curve. Relative quantification relates the PCR signal of the target transcript in a treatment group to that of another sample such as an untreated control. The 2(-Delta Delta C(T)) method is a convenient way to analyze the relative changes in gene expression from real-time quantitative PCR experiments. The purpose of this report is to present the derivation, assumptions, and applications of the 2(-Delta Delta C(T)) method. In addition, we present the derivation and applications of two variations of the 2(-Delta Delta C(T)) method that may be useful in the analysis of real-time, quantitative PCR data. Copyright 2001 Elsevier Science (USA).
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Sugars and plant innate immunity.

            Sugars are involved in many metabolic and signalling pathways in plants. Sugar signals may also contribute to immune responses against pathogens and probably function as priming molecules leading to pathogen-associated molecular patterns (PAMP)-triggered immunity and effector-triggered immunity in plants. These putative roles also depend greatly on coordinated relationships with hormones and the light status in an intricate network. Although evidence in favour of sugar-mediated plant immunity is accumulating, more in-depth fundamental research is required to unravel the sugar signalling pathways involved. This might pave the way for the use of biodegradable sugar-(like) compounds to counteract plant diseases as cheaper and safer alternatives for toxic agrochemicals.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Induced systemic resistance (ISR) against pathogens in the context of induced plant defences.

              M Heil (2002)
              Induced systemic resistance (ISR) of plants against pathogens is a widespread phenomenon that has been intensively investigated with respect to the underlying signalling pathways as well as to its potential use in plant protection. Elicited by a local infection, plants respond with a salicylic-dependent signalling cascade that leads to the systemic expression of a broad spectrum and long-lasting disease resistance that is efficient against fungi, bacteria and viruses. Changes in cell wall composition, de novo production of pathogenesis-related-proteins such as chitinases and glucanases, and synthesis of phytoalexins are associated with resistance, although further defensive compounds are likely to exist but remain to be identified. In this Botanical Briefing we focus on interactions between ISR and induced resistance against herbivores that is mediated by jasmonic acid as a central signalling molecule. While many studies report cross-resistance, others have found trade-offs, i.e. inhibition of one resistance pathway by the other. Here we propose a framework that explains many of the thus far contradictory results. We regard elicitation separately from signalling and from production, i.e. the synthesis of defensive compounds. Interactions on all three levels can act independently from each other.
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                Journal
                MDARE6
                Marine Drugs
                Marine Drugs
                MDPI AG
                1660-3397
                February 2022
                January 20 2022
                : 20
                : 2
                : 88
                Article
                10.3390/md20020088
                35200618
                df5d5d9f-fded-4838-9132-5cd6a2c7f961
                © 2022

                https://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article