7
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Conformational rearrangements of an archaeal chaperonin upon ATPase cycling

      , , , , ,
      Current Biology
      Elsevier BV

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Chaperonins are double-ring protein assemblies with a central cavity that provides a sequestered environment for in vivo protein folding. Their reaction cycle is thought to consist of a nucleotide-regulated alternation between an open substrate-acceptor state and a closed folding-active state. The cavity of ATP-charged group I chaperonins, typified by Escherichia coli GroEL [1], is sealed off by a co-chaperonin, whereas group II chaperonins--the archaeal thermosome and eukaryotic TRiC/CCT [2]--possess a built-in lid [3-5]. The mechanism of the lid's rearrangements requires clarification, as even in the absence of nucleotides, thermosomes of Thermoplama acidophilum appear open in vitrified ice [6] and closed in crystals [4]. Here we analyze the conformation of the thermosome at each step of the ATPase cycle by small-angle neutron scattering. The apo-chaperonin is open in solution, and ATP binding induces its further expansion. Closure seems to occur during ATP hydrolysis and before phosphate release, and represents the rate-limiting step of the cycle. The same closure can be triggered by the crystallization buffer. Thus, the allosteric regulation of group II chaperonins appears different from that of their group I counterparts.

          Related collections

          Author and article information

          Journal
          Current Biology
          Current Biology
          Elsevier BV
          09609822
          April 2000
          April 2000
          : 10
          : 7
          : 405-408
          Article
          10.1016/S0960-9822(00)00421-8
          10753750
          df633d90-67fa-482e-8f0e-06353b703311
          © 2000

          https://www.elsevier.com/tdm/userlicense/1.0/

          https://www.elsevier.com/open-access/userlicense/1.0/

          History

          Comments

          Comment on this article