1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Survival and mass growth of cold gas in a turbulent, multiphase medium

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          ABSTRACT

          Astrophysical gases are commonly multiphase and highly turbulent. In this work, we investigate the survival and growth of cold gas in such a turbulent, multiphase medium using three-dimensional hydrodynamical simulations. Similar to previous work simulating coherent flow (winds), we find that cold gas survives if the cooling time of the mixed gas is shorter than the Kelvin–Helmholtz time of the cold gas clump (with some weak additional Mach number dependence). However, there are important differences. Near the survival threshold, the long-term evolution is highly stochastic, and subject to the existence of sufficiently large clumps. In a turbulent flow, the cold gas continuously fragments, enhancing its surface area. This leads to exponential mass growth, with a growth time given by the geometric mean of the cooling and the mixing time. The fragmentation process leads to a large number of small droplets which follow a scale-free dN/dm ∝ m−2 mass distribution, and dominate the area covering fraction. Thus, whilst survival depends on the presence of large ‘clouds’, these in turn produce a ‘fog’ of smaller droplets tightly coupled to the hot phase which are probed by absorption line spectroscopy. We show with the aid of Monte Carlo simulations that the simulated mass distribution emerges naturally due to the proportional mass growth and the coagulation of droplets. We discuss the implications of our results for convergence criteria of larger scale simulations and observations of the circumgalactic medium.

          Related collections

          Most cited references114

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          SciPy 1.0: fundamental algorithms for scientific computing in Python

          SciPy is an open-source scientific computing library for the Python programming language. Since its initial release in 2001, SciPy has become a de facto standard for leveraging scientific algorithms in Python, with over 600 unique code contributors, thousands of dependent packages, over 100,000 dependent repositories and millions of downloads per year. In this work, we provide an overview of the capabilities and development practices of SciPy 1.0 and highlight some recent technical developments.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Matplotlib: A 2D Graphics Environment

              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              The NumPy Array: A Structure for Efficient Numerical Computation

                Bookmark

                Author and article information

                Contributors
                Journal
                Monthly Notices of the Royal Astronomical Society
                Oxford University Press (OUP)
                0035-8711
                1365-2966
                March 2022
                February 03 2022
                March 2022
                February 03 2022
                November 23 2021
                : 511
                : 1
                : 859-876
                Article
                10.1093/mnras/stab3351
                df79731b-7ce4-4d4b-a7c7-e0873c7fdc6f
                © 2021

                https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model

                History

                Comments

                Comment on this article