23
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Components of Selection in the Evolution of the Influenza Virus: Linkage Effects Beat Inherent Selection

      research-article
      * , *
      PLoS Pathogens
      Public Library of Science

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The influenza virus is an important human pathogen, with a rapid rate of evolution in the human population. The rate of homologous recombination within genes of influenza is essentially zero. As such, where two alleles within the same gene are in linkage disequilibrium, interference between alleles will occur, whereby selection acting upon one allele has an influence upon the frequency of the other. We here measured the relative importance of selection and interference effects upon the evolution of influenza. We considered time-resolved allele frequency data from the global evolutionary history of the haemagglutinin gene of human influenza A/H3N2, conducting an in-depth analysis of sequences collected since 1996. Using a model that accounts for selection-caused interference between alleles in linkage disequilibrium, we estimated the inherent selective benefit of individual polymorphisms in the viral population. These inherent selection coefficients were in turn used to calculate the total selective effect of interference acting upon each polymorphism, considering the effect of the initial background upon which a mutation arose, and the subsequent effect of interference from other alleles that were under selection. Viewing events in retrospect, we estimated the influence of each of these components in determining whether a mutant allele eventually fixed or died in the global viral population. Our inherent selection coefficients, when combined across different regions of the protein, were consistent with previous measurements of dN/dS for the same system. Alleles going on to fix in the global population tended to be under more positive selection, to arise on more beneficial backgrounds, and to avoid strong negative interference from other alleles under selection. However, on average, the fate of a polymorphism was determined more by the combined influence of interference effects than by its inherent selection coefficient.

          Author Summary

          Success in life is the product of many factors. Inherent ability often underlies great achievement. But other factors may play their part. The circumstances a child is born into may help or hinder his or her progress. Later events also have their effect; a life may be influenced by a lucky break, or an unforeseen disaster. In this work, we examine the factors underlying success for mutations in the HA gene of human influenza virus A/H3N2, defining success as the attainment of a high frequency in the global population. We examined the history of the gene from 1968 until 2010. For each observed mutation, a mathematical model was used to estimate the inherent benefit or disadvantage it conferred to the virus. We calculated the advantageousness or otherwise of the background upon which it arose, and the subsequent effect of interference from other mutations under selection. We found that successful mutations tended to have an advantageous background, and were subsequently fortunate in avoiding negative events throughout their lifetime. Beneficial mutations were more likely to be successful. But a mutation's chances of success were influenced more by circumstances of birth and subsequent events, than by its inherent effect on the virus.

          Related collections

          Most cited references29

          • Record: found
          • Abstract: found
          • Article: not found

          Codon-substitution models for heterogeneous selection pressure at amino acid sites.

          Comparison of relative fixation rates of synonymous (silent) and nonsynonymous (amino acid-altering) mutations provides a means for understanding the mechanisms of molecular sequence evolution. The nonsynonymous/synonymous rate ratio (omega = d(N)d(S)) is an important indicator of selective pressure at the protein level, with omega = 1 meaning neutral mutations, omega 1 diversifying positive selection. Amino acid sites in a protein are expected to be under different selective pressures and have different underlying omega ratios. We develop models that account for heterogeneous omega ratios among amino acid sites and apply them to phylogenetic analyses of protein-coding DNA sequences. These models are useful for testing for adaptive molecular evolution and identifying amino acid sites under diversifying selection. Ten data sets of genes from nuclear, mitochondrial, and viral genomes are analyzed to estimate the distributions of omega among sites. In all data sets analyzed, the selective pressure indicated by the omega ratio is found to be highly heterogeneous among sites. Previously unsuspected Darwinian selection is detected in several genes in which the average omega ratio across sites is 1. Genes undergoing positive selection include the beta-globin gene from vertebrates, mitochondrial protein-coding genes from hominoids, the hemagglutinin (HA) gene from human influenza virus A, and HIV-1 env, vif, and pol genes. Tests for the presence of positively selected sites and their subsequent identification appear quite robust to the specific distributional form assumed for omega and can be achieved using any of several models we implement. However, we encountered difficulties in estimating the precise distribution of omega among sites from real data sets.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            The hitch-hiking effect of a favourable gene.

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Ecological and immunological determinants of influenza evolution.

              In pandemic and epidemic forms, influenza causes substantial, sometimes catastrophic, morbidity and mortality. Intense selection from the host immune system drives antigenic change in influenza A and B, resulting in continuous replacement of circulating strains with new variants able to re-infect hosts immune to earlier types. This 'antigenic drift' often requires a new vaccine to be formulated before each annual epidemic. However, given the high transmissibility and mutation rate of influenza, the constancy of genetic diversity within lineages over time is paradoxical. Another enigma is the replacement of existing strains during a global pandemic caused by 'antigenic shift'--the introduction of a new avian influenza A subtype into the human population. Here we explore ecological and immunological factors underlying these patterns using a mathematical model capturing both realistic epidemiological dynamics and viral evolution at the sequence level. By matching model output to phylogenetic patterns seen in sequence data collected through global surveillance, we find that short-lived strain-transcending immunity is essential to restrict viral diversity in the host population and thus to explain key aspects of drift and shift dynamics.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS Pathog
                PLoS Pathog
                plos
                plospath
                PLoS Pathogens
                Public Library of Science (San Francisco, USA )
                1553-7366
                1553-7374
                December 2012
                December 2012
                27 December 2012
                : 8
                : 12
                : e1003091
                Affiliations
                [1]Wellcome Trust Sanger Institute, Hinxton, Cambridge, United Kingdom
                University of California San Francisco, United States of America
                Author notes

                The authors have declared that no competing interests exist.

                Conceived and designed the experiments: CJRI VM. Performed the experiments: CJRI. Analyzed the data: CJRI. Contributed reagents/materials/analysis tools: CJRI. Wrote the paper: CJRI VM. Interpreted the results: CJRI VM.

                Article
                PPATHOGENS-D-12-01746
                10.1371/journal.ppat.1003091
                3531508
                23300444
                dfbe9896-18ba-4462-b30e-3c8dbb421e38
                Copyright @ 2012

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 10 July 2012
                : 5 November 2012
                Page count
                Pages: 10
                Funding
                This work was supported by the Wellcome Trust under grant reference 098051. This research was supported in part by the National Science Foundation under Grant No. NSF PHY05-51164 during a visit at the Kavli Institute of Theoretical Physics (KITP, Santa Barbara, CA). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article
                Biology
                Computational Biology
                Evolutionary Biology
                Population Genetics
                Natural Selection
                Evolutionary Theory
                Genomic Evolution
                Genetics
                Population Genetics
                Microbiology
                Virology
                Viral Evolution

                Infectious disease & Microbiology
                Infectious disease & Microbiology

                Comments

                Comment on this article