14
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Evolutionary significance of the microbial assemblages of large benthic Foraminifera

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          ABSTRACT

          Large benthic Foraminifera (LBF) are major carbonate producers on coral reefs, and are hosts to a diverse symbiotic microbial community. During warm episodes in the geological past, these reef‐building organisms expanded their geographical ranges as subtropical and tropical belts moved into higher latitudes. During these range‐expansion periods, LBF were the most prolific carbonate producers on reefs, dominating shallow carbonate platforms over reef‐building corals. Even though the fossil and modern distributions of groups of species that harbour different types of symbionts are known, the nature, mechanisms, and factors that influence their occurrence remain elusive. Furthermore, the presence of a diverse and persistent bacterial community has only recently gained attention. We examined recent advances in molecular identification of prokaryotic (i.e. bacteria) and eukaryotic (i.e. microalgae) associates, and palaeoecology, and place the partnership with bacteria and algae in the context of climate change. In critically reviewing the available fossil and modern data on symbiosis, we reveal a crucial role of microalgae in the response of LBF to ocean warming, and their capacity to colonise a variety of habitats, across both latitudes and broad depth ranges. Symbiont identity is a key factor enabling LBF to expand their geographic ranges when the sea‐surface temperature increases. Our analyses showed that over the past 66 million years (My), diatom‐bearing species were dominant in reef environments. The modern record shows that these species display a stable, persistent eukaryotic assemblage across their geographic distribution range, and are less dependent on symbiotic photosynthesis for survival. By contrast, dinoflagellate and chlorophytic species, which show a provincial distribution, tend to have a more flexible eukaryotic community throughout their range. This group is more dependent on their symbionts, and flexibility in their symbiosis is likely to be the driving force behind their evolutionary history, as they form a monophyletic group originating from a rhodophyte‐bearing ancestor. The study of bacterial assemblages, while still in its infancy, is a promising field of study. Bacterial communities are likely to be shaped by the local environment, although a core bacterial microbiome is found in species with global distributions. Cryptic speciation is also an important factor that must be taken into consideration. As global warming intensifies, genetic divergence in hosts in addition to the range of flexibility/specificity within host–symbiont associations will be important elements in the continued evolutionary success of LBF species in a wide range of environments. Based on fossil and modern data, we conclude that the microbiome, which includes both algal and bacterial partners, is a key factor influencing the evolution of LBF. As a result, the microbiome assists LBF in colonising a wide range of habitats, and allowed them to become the most important calcifiers on shallow platforms worldwide during periods of ocean warming in the geologic past. Since LBF are crucial ecosystem engineers and prolific carbonate producers, the microbiome is a critical component that will play a central role in the responses of LBF to a changing ocean, and ultimately in shaping the future of coral reefs.

          Related collections

          Most cited references209

          • Record: found
          • Abstract: found
          • Article: not found

          Cryptic species as a window on diversity and conservation.

          The taxonomic challenge posed by cryptic species (two or more distinct species classified as a single species) has been recognized for nearly 300 years, but the advent of relatively inexpensive and rapid DNA sequencing has given biologists a new tool for detecting and differentiating morphologically similar species. Here, we synthesize the literature on cryptic and sibling species and discuss trends in their discovery. However, a lack of systematic studies leaves many questions open, such as whether cryptic species are more common in particular habitats, latitudes or taxonomic groups. The discovery of cryptic species is likely to be non-random with regard to taxon and biome and, hence, could have profound implications for evolutionary theory, biogeography and conservation planning.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Archaea in coastal marine environments.

            E Delong (1992)
            Archaea (archaebacteria) are a phenotypically diverse group of microorganisms that share a common evolutionary history. There are four general phenotypic groups of archaea: the methanogens, the extreme halophiles, the sulfate-reducing archaea, and the extreme thermophiles. In the marine environment, archaeal habitats are generally limited to shallow or deep-sea anaerobic sediments (free-living and endosymbiotic methanogens), hot springs or deep-sea hydrothermal vents (methanogens, sulfate reducers, and extreme thermophiles), and highly saline land-locked seas (halophiles). This report provides evidence for the widespread occurrence of unusual archaea in oxygenated coastal surface waters of North America. Quantitative estimates indicated that up to 2% of the total ribosomal RNA extracted from coastal bacterioplankton assemblages was archaeal. Archaeal small-subunit ribosomal RNA-encoding DNAs (rDNAs) were cloned from mixed bacterioplankton populations collected at geographically distant sampling sites. Phylogenetic and nucleotide signature analyses of these cloned rDNAs revealed the presence of two lineages of archaea, each sharing the diagnostic signatures and structural features previously established for the domain Archaea. Both of these lineages were found in bacterioplankton populations collected off the east and west coasts of North America. The abundance and distribution of these archaea in oxic coastal surface waters suggests that these microorganisms represent undescribed physiological types of archaea, which reside and compete with aerobic, mesophilic eubacteria in marine coastal environments.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Beyond the Venn diagram: the hunt for a core microbiome.

              Discovering a core microbiome is important for understanding the stable, consistent components across complex microbial assemblages. A core is typically defined as the suite of members shared among microbial consortia from similar habitats, and is represented by the overlapping areas of circles in Venn diagrams, in which each circle contains the membership of the sample or habitats being compared. Ecological insight into core microbiomes can be enriched by 'omics approaches that assess gene expression, thereby extending the concept of the core beyond taxonomically defined membership to community function and behaviour. Parameters defined by traditional ecology theory, such as composition, phylogeny, persistence and connectivity, will also create a more complex portrait of the core microbiome and advance understanding of the role of key microorganisms and functions within and across ecosystems. © 2011 Society for Applied Microbiology and Blackwell Publishing Ltd.
                Bookmark

                Author and article information

                Contributors
                martina.prazeres@naturalis.nl
                Journal
                Biol Rev Camb Philos Soc
                Biol Rev Camb Philos Soc
                10.1111/(ISSN)1469-185X
                BRV
                Biological Reviews of the Cambridge Philosophical Society
                Blackwell Publishing Ltd (Oxford, UK )
                1464-7931
                1469-185X
                18 November 2018
                June 2019
                : 94
                : 3 ( doiID: 10.1111/brv.2019.94.issue-3 )
                : 828-848
                Affiliations
                [ 1 ] Marine Biodiversity Group Naturalis Biodiversity Center 2300 RA, Leiden, 9517 the Netherlands
                Author notes
                [*] [* ]Address for correspondence (Tel: +31 (0)71‐7519329; E‐mail: martina.prazeres@ 123456naturalis.nl )
                Author information
                https://orcid.org/0000-0002-9443-4998
                Article
                BRV12482
                10.1111/brv.12482
                7379505
                30450723
                dfcd668b-9ecd-44b8-8211-5232baadf460
                © 2018 The Authors. Biological Reviews published by John Wiley & Sons Ltd on behalf of Cambridge Philosophical Society.

                This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

                History
                : 26 April 2018
                : 21 October 2018
                : 24 October 2018
                Page count
                Figures: 6, Tables: 1, Pages: 21, Words: 18200
                Funding
                Funded by: Nederlandse Organisatie voor Wetenschappelijk Onderzoek (NWO) , open-funder-registry 10.13039/501100003246;
                Categories
                Original Article
                Original Articles
                Custom metadata
                2.0
                June 2019
                Converter:WILEY_ML3GV2_TO_JATSPMC version:5.8.5 mode:remove_FC converted:24.07.2020

                Ecology
                symbiosis,microbiome,coral reefs,climate change,ocean warming,cenozoic
                Ecology
                symbiosis, microbiome, coral reefs, climate change, ocean warming, cenozoic

                Comments

                Comment on this article