5
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      HOTTIP downregulation reduces neuronal damage and microglial activation in Parkinson's disease cell and mouse models

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Abstract

          HOXA transcript at the distal tip (HOTTIP), a newly identified long noncoding RNA, has been shown to exhibit anti-inflammatory effects and inhibit oxygen-glucose deprivation-induced neuronal apoptosis. However, its role in Parkinson’s disease (PD) remains unclear. 1-Methyl-4-phenylpyridium (MPP +) and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) were used to establish PD models in SH-SY5Y and BV2 cells and in C57BL/6 male mice, respectively. In vitro, after HOTTIP knockdown by sh-HOTTIP transfection, HOTTIP and FOXO1 overexpression promoted SH-SY5Y apoptosis, BV2 microglial activation, proinflammatory cytokine expression, and nuclear factor kappa-B and NACHT, LRR and PYD domains-containing protein 3 inflammasome activation. Overexpression of miR-615-3p inhibited MPP +-induced neuronal apoptosis and microglial inflammation and ameliorated HOTTIP- and FOXO1-mediated nerve injury and inflammation. In vivo, HOTTIP knockdown alleviated motor dysfunction in PD mice and reduced neuronal apoptosis and microglial activation in the substantia nigra. These findings suggest that inhibition of HOTTIP mitigates neuronal apoptosis and microglial activation in PD models by modulating miR-615-3p/FOXO1. This study was approved by the Ethics Review Committee of the Affiliated Hospital of Qingdao University, China (approval No. UDX-2018-042) in June 2018.

          Related collections

          Most cited references56

          • Record: found
          • Abstract: found
          • Article: not found

          Functions and mechanisms of microglia/macrophages in neuroinflammation and neurogenesis after stroke.

          Microglia/macrophages are the major immune cells involved in the defence against brain damage. Their morphology and functional changes are correlated with the release of danger signals induced by stroke. These cells are normally responsible for clearing away dead neural cells and restoring neuronal functions. However, when excessively activated by the damage-associated molecular patterns following stroke, they can produce a large number of proinflammatory cytokines that can disrupt neural cells and the blood-brain barrier and influence neurogenesis. These effects indicate the important roles of microglia/macrophages in the pathophysiological processes of stroke. However, the modifiable and adaptable nature of microglia/macrophages may also be beneficial for brain repair and not just result in damage. These distinct roles may be attributed to the different microglia/macrophage phenotypes because the M1 population is mainly destructive, while the M2 population is neuroprotective. Additionally, different gene expression signature changes in microglia/macrophages have been found in diverse inflammatory milieus. These biofunctional features enable dual roles for microglia/macrophages in brain damage and repair. Currently, it is thought that the proper inflammatory milieu may provide a suitable microenvironment for neurogenesis; however, detailed mechanisms underlying the inflammatory responses that initiate or inhibit neurogenesis remain unknown. This review summarizes recent progress concerning the mechanisms involved in brain damage, repair and regeneration related to microglia/macrophage activation and phenotype transition after stroke. We also argue that future translational studies should be targeting multiple key regulating molecules to improve brain repair, which should be accompanied by the concept of a "therapeutic time window" for sequential therapies.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Alpha-synuclein: Pathology, mitochondrial dysfunction and neuroinflammation in Parkinson’s disease

            Parkinson's disease (PD) is a complex, chronic and progressive neurodegenerative disease. While the etiology of PD is likely multifactorial, the protein α-synuclein is a central component to the pathogenesis of the disease. However, the mechanism by which α-synuclein causes toxicity and contributes to neuronal death remains unclear. Mitochondrial dysfunction is also widely considered to play a major role in the underlying mechanisms contributing to neurodegeneration in PD. This review discusses evidence for the neuropathological role for α-synuclein in the dysfunction of dopamine neurons in PD. We also discuss insights into the structure, localization, and cellular roles for α-synuclein that may influence its aggregation properties, ultimately impacting its pathogenicity, role in lysosomal dysfunction and activation of the neuroimmune response. We further highlight recent evidence linking α-synuclein and mitochondrial dysfunction in neurodegeneration. Identifying the underlying mechanisms responsible for this bi-directional relationship between α-synuclein and mitochondrial dysfunction may provide new insights into the pathophysiology of PD.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The mechanisms of NLRP3 inflammasome/pyroptosis activation and their role in Parkinson's disease

              Parkinson's disease (PD) is a typical neurodegenerative disease and the pathological feature of which is the death of dopamine neurons in the substantia nigra region. At present, neuronal death caused by inflammatory cytokine-mediated neuroinflammation is being extensively studied. The nucleotide-binding oligomerization domain-, leucine-rich repeat and pyrin domain-containing 3 (NLRP3) inflammasome is an inflammatory complex existing in microglia. Its activation promotes the secretion of the inflammatory cytokine interleukin-1β/18 (IL-1β/18) and induces pyroptosis, a type of cell death that possesses the potential for inflammation, to rupture microglia to further release IL-1β. In this review we focus on the mechanisms of activation of the NLRP3 inflammasome and pyroptosis and their inflammatory effects on the development of PD. In addition, we focus on some inhibitors of NLRP3 inflammatory pathways to alleviate the progression of PD by inhibiting central inflammation and provide new therapeutic strategies for the treatment of PD.
                Bookmark

                Author and article information

                Journal
                Neural Regen Res
                Neural Regen Res
                NRR
                Neural Regeneration Research
                Wolters Kluwer - Medknow (India )
                1673-5374
                1876-7958
                April 2022
                30 August 2021
                : 17
                : 4
                : 887-897
                Affiliations
                [1 ]Department of Neurosurgery, the Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China
                [2 ]Department of Neurosurgery, Laiyang People's Hospital, Yantai, Shandong Province, China
                [3 ]Department of Endocrine and Metabolic Diseases, the Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China
                [4 ]Emergency Department, the Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China
                Author notes
                [* ] Correspondence to: Peng Sun, pqhhu25@ 123456163.com
                [#]

                Both authors contributed equally to this work.

                Author contributions: Guarantor of integrity of the entire study: PL, TJ; study conception: DHW; study design: PS; experimental and clinical studies: XL; data analysis and acquisition: XDC; manuscript preparation: PL; manuscript editing and review: SY. All authors read and approved the final manuscript.

                Author information
                https://orcid.org/0000-0001-8902-6925
                Article
                NRR-17-887
                10.4103/1673-5374.322475
                8530116
                34472490
                e0332dad-a432-4995-8954-c1b09a2fb2e6
                Copyright: © Neural Regeneration Research

                This is an open access journal, and articles are distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 License, which allows others to remix, tweak, and build upon the work non-commercially, as long as appropriate credit is given and the new creations are licensed under the identical terms.

                History
                : 26 August 2020
                : 26 October 2020
                : 18 May 2021
                Categories
                Research Article

                apoptosis,inflammation,mir-615-3p,neuron,nlrp3,noncoding rna,parkinson's disease,hottip

                Comments

                Comment on this article