5
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      An Open Software Platform for the Automated Design of Paper-Based Microfluidic Devices

      research-article
      , ,
      Scientific Reports
      Nature Publishing Group UK

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Paper-based microfluidic devices have many applications in biomedical and environmental analysis. However, the process of prototyping device designs can be tedious, error-prone, and time-consuming. Here, we present a cross-platform, open-source software tool—AutoPAD—developed to quickly create and modify device designs and provide a free alternative to commercial design software. The capabilities that we designed to be inherent to AutoPAD (e.g., automatic zone alignment and design refactoring) highlight its potential use in nearly any paper-based microfluidic device application and for creating nearly any desired design, which we demonstrate through the recreation of numerous device designs from the literature.

          Related collections

          Most cited references44

          • Record: found
          • Abstract: found
          • Article: not found

          Diagnostics for the developing world: microfluidic paper-based analytical devices.

          Microfluidic paper-based analytical devices (microPADs) are a new class of point-of-care diagnostic devices that are inexpensive, easy to use, and designed specifically for use in developing countries. (To listen to a podcast about this feature, please go to the Analytical Chemistry multimedia page at pubs.acs.org/page/ancham/audio/index.html.).
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Three-dimensional microfluidic devices fabricated in layered paper and tape.

            This article describes a method for fabricating 3D microfluidic devices by stacking layers of patterned paper and double-sided adhesive tape. Paper-based 3D microfluidic devices have capabilities in microfluidics that are difficult to achieve using conventional open-channel microsystems made from glass or polymers. In particular, 3D paper-based devices wick fluids and distribute microliter volumes of samples from single inlet points into arrays of detection zones (with numbers up to thousands). This capability makes it possible to carry out a range of new analytical protocols simply and inexpensively (all on a piece of paper) without external pumps. We demonstrate a prototype 3D device that tests 4 different samples for up to 4 different analytes and displays the results of the assays in a side-by-side configuration for easy comparison. Three-dimensional paper-based microfluidic devices are especially appropriate for use in distributed healthcare in the developing world and in environmental monitoring and water analysis.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              FLASH: a rapid method for prototyping paper-based microfluidic devices.

              This article describes FLASH (Fast Lithographic Activation of Sheets), a rapid method for laboratory prototyping of microfluidic devices in paper. Paper-based microfluidic devices are emerging as a new technology for applications in diagnostics for the developing world, where low cost and simplicity are essential. FLASH is based on photolithography, but requires only a UV lamp and a hotplate; no clean-room or special facilities are required (FLASH patterning can even be performed in sunlight if a UV lamp and hotplate are unavailable). The method provides channels in paper with dimensions as small as 200 microm in width and 70 microm in height; the height is defined by the thickness of the paper. Photomasks for patterning paper-based microfluidic devices can be printed using an ink-jet printer or photocopier, or drawn by hand using a waterproof black pen. FLASH provides a straightforward method for prototyping paper-based microfluidic devices in regions where the technological support for conventional photolithography is not available.
                Bookmark

                Author and article information

                Contributors
                charles.mace@tufts.edu
                Journal
                Sci Rep
                Sci Rep
                Scientific Reports
                Nature Publishing Group UK (London )
                2045-2322
                24 November 2017
                24 November 2017
                2017
                : 7
                : 16224
                Affiliations
                ISNI 0000 0004 1936 7531, GRID grid.429997.8, Department of Chemistry, Tufts University, 62 Talbot Avenue, ; Medford, MA 02155 USA
                Author information
                http://orcid.org/0000-0002-1472-9623
                http://orcid.org/0000-0003-3410-5014
                Article
                16542
                10.1038/s41598-017-16542-8
                5701164
                29176646
                e0755ac7-9be1-483c-907c-017bd1bc1719
                © The Author(s) 2017

                Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

                History
                : 11 September 2017
                : 9 November 2017
                Categories
                Article
                Custom metadata
                © The Author(s) 2017

                Uncategorized
                Uncategorized

                Comments

                Comment on this article