39
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Clinical Practice Guidelines for Hypothyroidism in Adults: Cosponsored by the American Association of Clinical Endocrinologists and the American Thyroid Association

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Hypothyroidism has multiple etiologies and manifestations. Appropriate treatment requires an accurate diagnosis and is influenced by coexisting medical conditions. This paper describes evidence-based clinical guidelines for the clinical management of hypothyroidism in ambulatory patients. The development of these guidelines was commissioned by the American Association of Clinical Endocrinologists (AACE) in association with American Thyroid Association (ATA). AACE and the ATA assembled a task force of expert clinicians who authored this article. The authors examined relevant literature and took an evidence-based medicine approach that incorporated their knowledge and experience to develop a series of specific recommendations and the rationale for these recommendations. The strength of the recommendations and the quality of evidence supporting each was rated according to the approach outlined in the American Association of Clinical Endocrinologists Protocol for Standardized Production of Clinical Guidelines-2010 update. Topics addressed include the etiology, epidemiology, clinical and laboratory evaluation, management, and consequences of hypothyroidism. Screening, treatment of subclinical hypothyroidism, pregnancy, and areas for future research are also covered. Fifty-two evidence-based recommendations and subrecommendations were developed to aid in the care of patients with hypothyroidism and to share what the authors believe is current, rational, and optimal medical practice for the diagnosis and care of hypothyroidism. A serum thyrotropin is the single best screening test for primary thyroid dysfunction for the vast majority of outpatient clinical situations. The standard treatment is replacement with L-thyroxine. The decision to treat subclinical hypothyroidism when the serum thyrotropin is less than 10 mIU/L should be tailored to the individual patient.

          Related collections

          Most cited references259

          • Record: found
          • Abstract: found
          • Article: not found

          Serum TSH, T(4), and thyroid antibodies in the United States population (1988 to 1994): National Health and Nutrition Examination Survey (NHANES III).

          NHANES III measured serum TSH, total serum T(4), antithyroperoxidase (TPOAb), and antithyroglobulin (TgAb) antibodies from a sample of 17,353 people aged > or =12 yr representing the geographic and ethnic distribution of the U.S. population. These data provide a reference for other studies of these analytes in the U.S. For the 16,533 people who did not report thyroid disease, goiter, or taking thyroid medications (disease-free population), we determined mean concentrations of TSH, T(4), TgAb, and TPOAb. A reference population of 13,344 people was selected from the disease-free population by excluding, in addition, those who were pregnant, taking androgens or estrogens, who had thyroid antibodies, or biochemical hypothyroidism or hyperthyroidism. The influence of demographics on TSH, T(4), and antibodies was examined. Hypothyroidism was found in 4.6% of the U.S. population (0.3% clinical and 4.3% subclinical) and hyperthyroidism in 1.3% (0.5% clinical and 0.7% subclinical). (Subclinical hypothyroidism is used in this paper to mean mild hypothyroidism, the term now preferred by the American Thyroid Association for the laboratory findings described.) For the disease-free population, mean serum TSH was 1.50 (95% confidence interval, 1.46-1.54) mIU/liter, was higher in females than males, and higher in white non-Hispanics (whites) [1.57 (1.52-1.62) mIU/liter] than black non-Hispanics (blacks) [1.18 (1.14-1.21) mIU/liter] (P < 0.001) or Mexican Americans [1.43 (1.40-1.46) mIU/liter] (P < 0.001). TgAb were positive in 10.4 +/- 0.5% and TPOAb, in 11.3 +/- 0.4%; positive antibodies were more prevalent in women than men, increased with age, and TPOAb were less prevalent in blacks (4.5 +/- 0.3%) than in whites (12.3 +/- 0.5%) (P < 0.001). TPOAb were significantly associated with hypo or hyperthyroidism, but TgAb were not. Using the reference population, geometric mean TSH was 1.40 +/- 0.02 mIU/liter and increased with age, and was significantly lower in blacks (1.18 +/- 0.02 mIU/liter) than whites (1.45 +/- 0.02 mIU/liter) (P < 0.001) and Mexican Americans (1.37 +/- 0.02 mIU/liter) (P < 0.001). Arithmetic mean total T(4) was 112.3 +/- 0.7 nmol/liter in the disease-free population and was consistently higher among Mexican Americans in all populations. In the reference population, mean total T(4) in Mexican Americans was (116.3 +/- 0.7 nmol/liter), significantly higher than whites (110.0 +/- 0.8 nmol/liter) or blacks (109.4 +/- 0.8 nmol/liter) (P < 0.0001). The difference persisted in all age groups. In summary, TSH and the prevalence of antithyroid antibodies are greater in females, increase with age, and are greater in whites and Mexican Americans than in blacks. TgAb alone in the absence of TPOAb is not significantly associated with thyroid disease. The lower prevalence of thyroid antibodies and lower TSH concentrations in blacks need more research to relate these findings to clinical status. A large proportion of the U.S. population unknowingly have laboratory evidence of thyroid disease, which supports the usefulness of screening for early detection.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Subclinical thyroid disease: scientific review and guidelines for diagnosis and management.

            Patients with serum thyroid-stimulating hormone (TSH) levels outside the reference range and levels of free thyroxine (FT4) and triiodothyronine (T3) within the reference range are common in clinical practice. The necessity for further evaluation, possible treatment, and the urgency of treatment have not been clearly established. To define subclinical thyroid disease, review its epidemiology, recommend an appropriate evaluation, explore the risks and benefits of treatment and consequences of nontreatment, and determine whether population-based screening is warranted. MEDLINE, EMBASE, Biosis, the Agency for Healthcare Research and Quality, National Guideline Clearing House, the Cochrane Database of Systematic Reviews and Controlled Trials Register, and several National Health Services (UK) databases were searched for articles on subclinical thyroid disease published between 1995 and 2002. Articles published before 1995 were recommended by expert consultants. A total of 195 English-language or translated papers were reviewed. Editorials, individual case studies, studies enrolling fewer than 10 patients, and nonsystematic reviews were excluded. Information related to authorship, year of publication, number of subjects, study design, and results were extracted and formed the basis for an evidence report, consisting of tables and summaries of each subject area. The strength of the evidence that untreated subclinical thyroid disease is associated with clinical symptoms and adverse clinical outcomes was assessed and recommendations for clinical practice developed. Data relating the progression of subclinical to overt hypothyroidism were rated as good, but data relating treatment to prevention of progression were inadequate to determine a treatment benefit. Data relating a serum TSH level higher than 10 mIU/L to elevations in serum cholesterol were rated as fair but data relating to benefits of treatment were rated as insufficient. All other associations of symptoms and benefit of treatment were rated as insufficient or absent. Data relating a serum TSH concentration lower than 0.1 mIU/L to the presence of atrial fibrillation and progression to overt hyperthyroidism were rated as good, but no data supported treatment to prevent these outcomes. Data relating restoration of the TSH level to within the reference range with improvements in bone mineral density were rated as fair. Data addressing all other associations of subclinical hyperthyroid disease and adverse clinical outcomes or treatment benefits were rated as insufficient or absent. Subclinical hypothyroid disease in pregnancy is a special case and aggressive case finding and treatment in pregnant women can be justified. Data supporting associations of subclinical thyroid disease with symptoms or adverse clinical outcomes or benefits of treatment are few. The consequences of subclinical thyroid disease (serum TSH 0.1-0.45 mIU/L or 4.5-10.0 mIU/L) are minimal and we recommend against routine treatment of patients with TSH levels in these ranges. There is insufficient evidence to support population-based screening. Aggressive case finding is appropriate in pregnant women, women older than 60 years, and others at high risk for thyroid dysfunction.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The Colorado Thyroid Disease Prevalence Study

              The prevalence of abnormal thyroid function in the United States and the significance of thyroid dysfunction remain controversial. Systemic effects of abnormal thyroid function have not been fully delineated, particularly in cases of mild thyroid failure. Also, the relationship between traditional hypothyroid symptoms and biochemical thyroid function is unclear.
                Bookmark

                Author and article information

                Journal
                Thyroid
                Thyroid
                Mary Ann Liebert Inc
                1050-7256
                1557-9077
                December 2012
                December 2012
                : 22
                : 12
                : 1200-1235
                Affiliations
                [1 ]Endocrine Division, Harvard Vanguard Medical Associates, Boston, Massachusetts.
                [2 ]Division of Endocrinology, Beth Israel Deaconess Medical Center, Boston, Massachusetts.
                [3 ]New Jersey Endocrine and Diabetes Associates, Ridgewood, New Jersey.
                [4 ]Division of Endocrinology, Mayo Clinic, Rochester, Minnesota.
                [5 ]The Thyroid Unit, North Shore University Hospital, Manhassett, New York.
                [6 ]Division of Endocrinology, Mount Sinai Hospital, New York, New York.
                [7 ]Division of Endocrinology, ProHealth Care Associates, Lake Success, New York.
                [8 ]Keck School of Medicine, University of Southern California, Los Angeles, California.
                [9 ]UCSF Medical Center at Mount Zion, San Francisco, California.
                Article
                10.1089/thy.2012.0205
                22954017
                e092f62d-ede7-4fa3-951d-25384c17eca9
                © 2012

                https://www.liebertpub.com/nv/resources-tools/text-and-data-mining-policy/121/

                History

                Comments

                Comment on this article