197
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Uncovering patterns of inter-urban trip and spatial interaction from social media check-in data

      Preprint

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The article revisits spatial interaction and distance decay from the perspective of human mobility patterns and spatially-embedded networks based on an empirical data set. We extract nationwide inter-urban movements in China from a check-in data set that covers half million individuals and 370 cities to analyze the underlying patterns of trips and spatial interactions. By fitting the gravity model, we find that the observed spatial interactions are governed by a power law distance decay effect. The obtained gravity model also well reproduces the exponential trip displacement distribution. However, due to the ecological fallacy issue, the movement of an individual may not obey the same distance decay effect. We also construct a spatial network where the edge weights denote the interaction strengths. The communities detected from the network are spatially connected and roughly consistent with province boundaries. We attribute this pattern to different distance decay parameters between intra-province and inter-province trips.

          Related collections

          Most cited references15

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Understanding individual human mobility patterns

          Despite their importance for urban planning, traffic forecasting, and the spread of biological and mobile viruses, our understanding of the basic laws governing human motion remains limited thanks to the lack of tools to monitor the time resolved location of individuals. Here we study the trajectory of 100,000 anonymized mobile phone users whose position is tracked for a six month period. We find that in contrast with the random trajectories predicted by the prevailing Levy flight and random walk models, human trajectories show a high degree of temporal and spatial regularity, each individual being characterized by a time independent characteristic length scale and a significant probability to return to a few highly frequented locations. After correcting for differences in travel distances and the inherent anisotropy of each trajectory, the individual travel patterns collapse into a single spatial probability distribution, indicating that despite the diversity of their travel history, humans follow simple reproducible patterns. This inherent similarity in travel patterns could impact all phenomena driven by human mobility, from epidemic prevention to emergency response, urban planning and agent based modeling.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Maps of random walks on complex networks reveal community structure

            To comprehend the multipartite organization of large-scale biological and social systems, we introduce a new information theoretic approach that reveals community structure in weighted and directed networks. The method decomposes a network into modules by optimally compressing a description of information flows on the network. The result is a map that both simplifies and highlights the regularities in the structure and their relationships. We illustrate the method by making a map of scientific communication as captured in the citation patterns of more than 6000 journals. We discover a multicentric organization with fields that vary dramatically in size and degree of integration into the network of science. Along the backbone of the network -- including physics, chemistry, molecular biology, and medicine -- information flows bidirectionally, but the map reveals a directional pattern of citation from the applied fields to the basic sciences.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              A universal model for mobility and migration patterns.

              Introduced in its contemporary form in 1946 (ref. 1), but with roots that go back to the eighteenth century, the gravity law is the prevailing framework with which to predict population movement, cargo shipping volume and inter-city phone calls, as well as bilateral trade flows between nations. Despite its widespread use, it relies on adjustable parameters that vary from region to region and suffers from known analytic inconsistencies. Here we introduce a stochastic process capturing local mobility decisions that helps us analytically derive commuting and mobility fluxes that require as input only information on the population distribution. The resulting radiation model predicts mobility patterns in good agreement with mobility and transport patterns observed in a wide range of phenomena, from long-term migration patterns to communication volume between different regions. Given its parameter-free nature, the model can be applied in areas where we lack previous mobility measurements, significantly improving the predictive accuracy of most of the phenomena affected by mobility and transport processes.
                Bookmark

                Author and article information

                Journal
                1310.0282

                Social & Information networks,General physics
                Social & Information networks, General physics

                Comments

                Comment on this article

                Similar content37

                Cited by78