453
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Properties of Doublecortin-(DCX)-Expressing Cells in the Piriform Cortex Compared to the Neurogenic Dentate Gyrus of Adult Mice

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The piriform cortex receives input from the olfactory bulb and (via the entorhinal cortex) sends efferents to the hippocampus, thereby connecting the two canonical neurogenic regions of the adult rodent brain. Doublecortin (DCX) is a cytoskeleton-associated protein that is expressed transiently in the course of adult neurogenesis. Interestingly, the adult piriform cortex, which is usually considered non-neurogenic (even though some reports exist that state otherwise), also contains an abundant population of DCX-positive cells. We asked how similar these cells would be to DCX-positive cells in the course of adult hippocampal neurogenesis. Using BAC-generated transgenic mice that express GFP under the DCX promoter, we studied DCX-expression and electrophysiological properties of DCX-positive cells in the mouse piriform cortex in comparison with the dentate gyrus. While one class of cells in the piriform cortex indeed showed features similar to newly generated immature granule neurons, the majority of DCX cells in the piriform cortex was mature and revealed large Na+ currents and multiple action potentials. Furthermore, when proliferative activity was assessed, we found that all DCX-expressing cells in the piriform cortex were strictly postmitotic, suggesting that no DCX-positive “neuroblasts” exist here as they do in the dentate gyrus. We conclude that DCX in the piriform cortex marks a unique population of postmitotic neurons with a subpopulation that retains immature characteristics associated with synaptic plasticity. DCX is thus, per se, no marker of neurogenesis but might be associated more broadly with plasticity.

          Related collections

          Most cited references60

          • Record: found
          • Abstract: found
          • Article: not found

          A gene expression atlas of the central nervous system based on bacterial artificial chromosomes.

          The mammalian central nervous system (CNS) contains a remarkable array of neural cells, each with a complex pattern of connections that together generate perceptions and higher brain functions. Here we describe a large-scale screen to create an atlas of CNS gene expression at the cellular level, and to provide a library of verified bacterial artificial chromosome (BAC) vectors and transgenic mouse lines that offer experimental access to CNS regions, cell classes and pathways. We illustrate the use of this atlas to derive novel insights into gene function in neural cells, and into principal steps of CNS development. The atlas, library of BAC vectors and BAC transgenic mice generated in this screen provide a rich resource that allows a broad array of investigations not previously available to the neuroscience community.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Milestones of neuronal development in the adult hippocampus.

            Adult hippocampal neurogenesis originates from precursor cells in the adult dentate gyrus and results in new granule cell neurons. We propose a model of the development that takes place between these two fixed points and identify several developmental milestones. From a presumably bipotent radial-glia-like stem cell (type-1 cell) with astrocytic properties, development progresses over at least two stages of amplifying lineage-determined progenitor cells (type-2 and type-3 cells) to early postmitotic and to mature neurons. The selection process, during which new neurons are recruited into function, and other regulatory influences differentially affect the different stages of development.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Vascular niche for adult hippocampal neurogenesis.

              The thin lamina between the hippocampal hilus and granule cell layer, or subgranule zone (SGZ), is an area of active proliferation within the adult hippocampus known to generate new neurons throughout adult life. Although the neuronal fate of many dividing cells is well documented, little information is available about the phenotypes of cells in S-phase or how the dividing cells might interact with neighboring cells in the process of neurogenesis. Here, we make the unexpected observation that dividing cells are found in dense clusters associated with the vasculature and roughly 37% of all dividing cells are immunoreactive for endothelial markers. Most of the newborn endothelial cells disappear over several weeks, suggesting that neurogenesis is intimately associated with a process of active vascular recruitment and subsequent remodeling. The present data provide the first evidence that adult neurogenesis occurs within an angiogenic niche. This environment may provide a novel interface where mesenchyme-derived cells and circulating factors influence plasticity in the adult central nervous system. Copyright 2000 Wiley-Liss, Inc.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS One
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, USA )
                1932-6203
                2011
                13 October 2011
                : 6
                : 10
                : e25760
                Affiliations
                [1 ]ISCRM, Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, Washington, United States of America
                [2 ]Department of Neurology and Center for Stroke Research Berlin, Charité University Medicine Berlin, Berlin, Germany
                [3 ]Max-Delbrück-Center for Molecular Medicine (MDC) Berlin-Buch, Berlin-Buch, Germany
                [4 ]Center for Integrative Physiology, School of Biomedical Sciences, University of Edinburgh, Edinburgh, United Kingdom
                [5 ]CRTD –Center for Regenerative Therapies Dresden, Technische Universität Dresden, Dresden, Germany
                University of South Florida, United States of America
                Author notes

                Conceived and designed the experiments: FK G. Kronenberg GC HK G. Kempermann. Performed the experiments: FK G. Kronenberg GC. Analyzed the data: FK G. Kronenberg GC HK G. Kempermann. Wrote the paper: FK G. Kronenberg GC HK G. Kempermann.

                Article
                PONE-D-11-11570
                10.1371/journal.pone.0025760
                3192736
                22022443
                e0b6d744-97c1-4b3a-bae2-44be55af3ab2
                Klempin et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
                History
                : 23 June 2011
                : 11 September 2011
                Page count
                Pages: 10
                Categories
                Research Article
                Biology
                Model Organisms
                Animal Models
                Mouse
                Neuroscience
                Developmental Neuroscience
                Neural Stem Cells
                Neurogenesis
                Synaptic Plasticity
                Neurophysiology
                Central Nervous System
                Sensory Systems
                Olfactory System
                Neuroanatomy
                Neurobiology of Disease and Regeneration

                Uncategorized
                Uncategorized

                Comments

                Comment on this article