3
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Linkage of microbiota and osteoporosis: A mini literature review

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The gut microbiota (GM) has become a recent topic of interest in the role of many disease states. Assessing patients with osteoporosis (OP), there is a strong correlation between gut microbe dysregulation and decreased bone density. Gut dysbiosis may lead to inflammation, dysregulation of nutrient and calcium transport across the intestine into circulation and systemic inflammation. Investigation of microbial profile relative to normal gut microbiomes, assessment of inflammatory markers such as interleukin-1 (IL-1), IL-6, and tumor necrosis factor-alpha. Therapies to normalize GM in patients with OP or prevent occurrence of OP to be investigated include: High fiber prebiotic diets to promote growth of normal gut bacteria and short chain fatty acid production, Probiotics to encourage growth of normal gut microbes, and antibiotic treatment followed by fecal matter transplant.

          Related collections

          Most cited references18

          • Record: found
          • Abstract: found
          • Article: not found

          The recent prevalence of osteoporosis and low bone mass in the United States based on bone mineral density at the femoral neck or lumbar spine.

          The goal of our study was to estimate the prevalence of osteoporosis and low bone mass based on bone mineral density (BMD) at the femoral neck and the lumbar spine in adults 50 years and older in the United States (US). We applied prevalence estimates of osteoporosis or low bone mass at the femoral neck or lumbar spine (adjusted by age, sex, and race/ethnicity to the 2010 Census) for the noninstitutionalized population aged 50 years and older from the National Health and Nutrition Examination Survey 2005-2010 to 2010 US Census population counts to determine the total number of older US residents with osteoporosis and low bone mass. There were more than 99 million adults aged 50 years and older in the US in 2010. Based on an overall 10.3% prevalence of osteoporosis, we estimated that in 2010, 10.2 million older adults had osteoporosis. The overall low bone mass prevalence was 43.9%, from which we estimated that 43.4 million older adults had low bone mass. We estimated that 7.7 million non-Hispanic white, 0.5 million non-Hispanic black, and 0.6 million Mexican American adults had osteoporosis, and another 33.8, 2.9, and 2.0 million had low bone mass, respectively. When combined, osteoporosis and low bone mass at the femoral neck or lumbar spine affected an estimated 53.6 million older US adults in 2010. Although most of the individuals with osteoporosis or low bone mass were non-Hispanic white women, a substantial number of men and women from other racial/ethnic groups also had osteoporotic BMD or low bone mass. © 2014 American Society for Bone and Mineral Research.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Pathogenesis of osteoporosis: concepts, conflicts, and prospects.

            Osteoporosis is a disorder in which loss of bone strength leads to fragility fractures. This review examines the fundamental pathogenetic mechanisms underlying this disorder, which include: (a) failure to achieve a skeleton of optimal strength during growth and development; (b) excessive bone resorption resulting in loss of bone mass and disruption of architecture; and (c) failure to replace lost bone due to defects in bone formation. Estrogen deficiency is known to play a critical role in the development of osteoporosis, while calcium and vitamin D deficiencies and secondary hyperparathyroidism also contribute. There are multiple mechanisms underlying the regulation of bone remodeling, and these involve not only the osteoblastic and osteoclastic cell lineages but also other marrow cells, in addition to the interaction of systemic hormones, local cytokines, growth factors, and transcription factors. Polymorphisms of a large number of genes have been associated with differences in bone mass and fragility. It is now possible to diagnose osteoporosis, assess fracture risk, and reduce that risk with antiresorptive or other available therapies. However, new and more effective approaches are likely to emerge from a better understanding of the regulators of bone cell function.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Antibiotics and the Human Gut Microbiome: Dysbioses and Accumulation of Resistances

              The human microbiome is overly exposed to antibiotics, due, not only to their medical use, but also to their utilization in farm animals and crops. Microbiome composition can be rapidly altered by exposure to antibiotics, with potential immediate effects on health, for instance through the selection of resistant opportunistic pathogens that can cause acute disease. Microbiome alterations induced by antibiotics can also indirectly affect health in the long-term. The mutualistic microbes in the human body interact with many physiological processes, and participate in the regulation of immune and metabolic homeostasis. Therefore, antibiotic exposure can alter many basic physiological equilibria, promoting long-term disease. In addition, excessive antibiotic use fosters bacterial resistance, and the overly exposed human microbiome has become a significant reservoir of resistance genes, contributing to the increasing difficulty in controlling bacterial infections. Here, the complex relationships between antibiotics and the human microbiome are reviewed, with focus on the intestinal microbiota, addressing (1) the effects of antibiotic use on the composition and function of the gut microbiota, (2) the impact of antibiotic-induced microbiota alterations on immunity, metabolism, and health, and (3) the role of the gut microbiota as a reservoir of antibiotic resistances.
                Bookmark

                Author and article information

                Contributors
                Journal
                World J Orthop
                WJO
                World Journal of Orthopedics
                Baishideng Publishing Group Inc
                2218-5836
                18 March 2019
                18 March 2019
                : 10
                : 3
                : 123-127
                Affiliations
                Department of Orthopedic Surgery, University of Toledo Medical Center, Toledo, OH 43614, United States
                Department of Orthopedic Surgery, University of Toledo Medical Center, Toledo, OH 43614, United States
                Department of Orthopedic Surgery, University of Toledo Medical Center, Toledo, OH 43614, United States
                Department of Orthopedic Surgery, University of Toledo Medical Center, Toledo, OH 43614, United States. jiayong.liu@ 123456utoledo.edu
                Department of Orthopedic Surgery, University of Toledo Medical Center, Toledo, OH 43614, United States
                Author notes

                Author contributions: All authors contributed to this paper.

                Corresponding author: Jiayong Liu, MD, Assistant Professor, Department of Orthopedic Surgery, University of Toledo Medical Center, 3065 Arlington Avenue, Toledo, OH 43614, United States. jiayong.liu@ 123456utoledo.edu

                Telephone: +1-419-383536 Fax: +1-419-3833562

                Article
                jWJO.v10.i3.pg123
                10.5312/wjo.v10.i3.123
                6428997
                30918795
                e10e455f-29c6-4ba2-b8e5-e7cd32ccf9a2
                ©The Author(s) 2019. Published by Baishideng Publishing Group Inc. All rights reserved.

                This article is an open-access article which was selected by an in-house editor and fully peer-reviewed by external reviewers. It is distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial.

                History
                : 16 November 2018
                : 6 January 2019
                : 28 January 2019
                Categories
                Minireviews

                osteoporosis,microbiota,linkage,bone density,gut microbiota
                osteoporosis, microbiota, linkage, bone density, gut microbiota

                Comments

                Comment on this article