27
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Sox11b regulates the migration and fate determination of Müller glia-derived progenitors during retina regeneration in zebrafish

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Abstract

          The transcription factor Sox11 plays important roles in retinal neurogenesis during vertebrate eye development. However, its function in retina regeneration remains elusive. Here we report that Sox11b, a zebrafish Sox11 homolog, regulates the migration and fate determination of Müller glia-derived progenitors (MGPCs) in an adult zebrafish model of mechanical retinal injury. Following a stab injury, the expression of Sox11b was induced in proliferating MGPCs in the retina. Sox11b knockdown did not affect MGPC formation at 4 days post-injury, although the nuclear morphology and subsequent radial migration of MGPCs were altered. At 7 days post-injury, Sox11b knockdown resulted in an increased proportion of MGPCs in the inner retina and a decreased proportion of MGPCs in the outer nuclear layer, compared with controls. Furthermore, Sox11b knockdown led to reduced photoreceptor regeneration, while it increased the numbers of newborn amacrines and retinal ganglion cells. Finally, quantitative polymerase chain reaction analysis revealed that Sox11b regulated the expression of Notch signaling components in the retina, and Notch inhibition partially recapitulated the Sox11b knockdown phenotype, indicating that Notch signaling functions downstream of Sox11b. Our findings imply that Sox11b plays key roles in MGPC migration and fate determination during retina regeneration in zebrafish, which may have critical implications for future explorations of retinal repair in mammals.

          Related collections

          Most cited references48

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Animal models of necrotizing enterocolitis: review of the literature and state of the art

          Abstract Necrotizing enterocolitis (NEC) remains the leading cause of gastrointestinal surgical emergency in preterm neonates. Over the last five decades, a variety of experimental models have been developed to study the pathophysiology of this disease and to test the effectiveness of novel therapeutic strategies. Experimental NEC is mainly modeled in neonatal rats, mice and piglets. In this review, we focus on these experimental models and discuss the major advantages and disadvantages of each. We also briefly discuss other models that are not as widely used but have contributed to our current knowledge of NEC.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            An improvement of the 2ˆ(-delta delta CT) method for quantitative real-time polymerase chain reaction data analysis.

            The 2(-ΔΔ)(CT) method has been extensively used as a relative quantification strategy for quantitative real-time polymerase chain reaction (qPCR) data analysis. This method is a convenient way to calculate relative gene expression levels between different samples in that it directly uses the threshold cycles (CTs) generated by the qPCR system for calculation. However, this approach relies heavily on an invalid assumption of 100% PCR amplification efficiency across all samples. In addition, the 2(-ΔΔ)(CT) method is applied to data with automatic removal of background fluorescence by the qPCR software. Since the background fluorescence is unknown, subtracting an inaccurate background can lead to distortion of the results. To address these problems, we present an improved method, the individual efficiency corrected calculation.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Müller glial cell reprogramming and retina regeneration.

              Müller glia are the major glial component of the retina. They are one of the last retinal cell types to be born during development, and they function to maintain retinal homeostasis and integrity. In mammals, Müller glia respond to retinal injury in various ways that can be either protective or detrimental to retinal function. Although these cells can be coaxed to proliferate and generate neurons under special circumstances, these responses are meagre and insufficient for repairing a damaged retina. By contrast, in teleost fish (such as zebrafish), the response of Müller glia to retinal injury involves a reprogramming event that imparts retinal stem cell characteristics and enables them to produce a proliferating population of progenitors that can regenerate all major retinal cell types and restore vision. Recent studies have revealed several important mechanisms underlying Müller glial cell reprogramming and retina regeneration in fish that may lead to new strategies for stimulating retina regeneration in mammals.
                Bookmark

                Author and article information

                Journal
                Neural Regen Res
                Neural Regen Res
                NRR
                Neural Regen Res
                Neural Regeneration Research
                Wolters Kluwer - Medknow (India )
                1673-5374
                1876-7958
                February 2023
                01 July 2022
                : 18
                : 2
                : 445-450
                Affiliations
                [1 ]Key Lab of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu Province, China
                [2 ]Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
                Author notes
                [* ] Correspondence to: Hui Xu, huixu82@ 123456126.com ; Jianfeng Lu, lu.jianfeng@ 123456tongji.edu.cn .
                [#]

                Both authors contribute equally to this work.

                Author contributions: Study design and manuscript draft: HX; experiment implementation: KS, ZL; data analysis: KS, ZL, LC, BL, YC, SZ, JL. All authors read and approved the final manuscript .

                Author information
                https://orcid.org/0000-0003-0547-0450
                https://orcid.org/0000-0003-0782-4160
                Article
                NRR-18-445
                10.4103/1673-5374.346550
                9396499
                35900444
                e117ccdf-87a1-45e9-a3f3-fd861eb435c4
                Copyright: © Neural Regeneration Research

                This is an open access journal, and articles are distributed under the terms of the Creative Commons AttributionNonCommercial-ShareAlike 4.0 License, which allows others to remix, tweak, and build upon the work non-commercially, as long as appropriate credit is given and the new creations are licensed under the identical terms.

                History
                : 14 January 2022
                : 15 April 2022
                : 10 May 2022
                Categories
                Research Article

                cell migration,fate determination,müller glia,müller glia-derived progenitor,notch signaling,photoreceptor,retina regeneration,sox11,transcription factor,zebrafish

                Comments

                Comment on this article