26
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Rescue of HIV-1 Release by Targeting Widely Divergent NEDD4-Type Ubiquitin Ligases and Isolated Catalytic HECT Domains to Gag

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Retroviruses engage the ESCRT pathway through late assembly (L) domains in Gag to promote virus release. HIV-1 uses a PTAP motif as its primary L domain, which interacts with the ESCRT-I component Tsg101. In contrast, certain other retroviruses primarily use PPxY-type L domains, which constitute ligands for NEDD4-type ubiquitin ligases. Surprisingly, although HIV-1 Gag lacks PPxY motifs, the release of HIV-1 L domain mutants is potently enhanced by ectopic NEDD4-2s, a native isoform with a naturally truncated C2 domain that appears to account for the residual titer of L domain-defective HIV-1. The reason for the unique potency of the NEDD4-2s isoform has remained unclear. We now show that the naturally truncated C2 domain of NEDD4-2s functions as an autonomous Gag-targeting module that can be functionally replaced by the unrelated Gag-binding protein cyclophilin A (CypA). The residual C2 domain of NEDD4-2s was sufficient to transfer the ability to stimulate HIV-1 budding to other NEDD4 family members, including the yeast homologue Rsp5, and even to isolated catalytic HECT domains. The isolated catalytic domain of NEDD4-2s also efficiently promoted HIV-1 budding when targeted to Gag via CypA. We conclude that the regions typically required for substrate recognition by HECT ubiquitin ligases are all dispensable to stimulate HIV-1 release, implying that the relevant target for ubiquitination is Gag itself or can be recognized by divergent isolated HECT domains. However, the mere ability to ubiquitinate Gag was not sufficient to stimulate HIV-1 budding. Rather, our results indicate that the synthesis of K63-linked ubiquitin chains is critical for ubiquitin ligase-mediated virus release.

          Author Summary

          To promote its escape from cells, HIV-1 hijacks cellular budding machinery through so-called L domains in its structural Gag protein. However, HIV-1 lacks a type of L domain that recruits NEDD4 ubiquitin ligases, a family of cellular enzymes that attach one or more copies of a small protein called ubiquitin to other proteins. Surprisingly, one NEDD4 family member, which is known as NEDD4-2s and stands out because its membrane-binding domain is uniquely truncated, can nevertheless potently stimulate HIV-1 release. Our study reveals that NEDD4-2s can do this because its altered membrane-binding domain allows it to associate with HIV-1 Gag. Remarkably, when tagged with the altered membrane-binding domain of NEDD4-2s, even a distantly related yeast protein becomes capable of stimulating the release of HIV-1. We also show that only the portion of NEDD4-2s that acts as an enzyme is required when targeted to HIV-1 Gag in an alternative manner. Taken together, our findings indicate that it is not simply the ability to attach ubiquitin to Gag, but rather the ability to form a particular type of ubiquitin chain in the immediate vicinity of Gag, that is critical to stimulate virus release.

          Related collections

          Most cited references51

          • Record: found
          • Abstract: found
          • Article: not found

          The ESCRT machinery in endosomal sorting of ubiquitylated membrane proteins.

          Selective trafficking of membrane proteins to lysosomes for destruction is required for proper cell signalling and metabolism. Ubiquitylation aids this process by specifying which proteins should be transported to the lysosome lumen by the multivesicular endosome pathway. The endosomal sorting complex required for transport (ESCRT) machinery sorts cargo labelled with ubiquitin into invaginations of endosome membranes. Then, through a highly conserved mechanism also used in cytokinesis and viral budding, it mediates the breaking off of the cargo-containing intraluminal vesicles from the perimeter membrane. The involvement of the ESCRT machinery in suppressing diseases such as cancer, neurodegeneration and infections underscores its importance to the cell.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Engineering hybrid genes without the use of restriction enzymes: gene splicing by overlap extension.

            Gene splicing by overlap extension is a new approach for recombining DNA molecules at precise junctions irrespective of nucleotide sequences at the recombination site and without the use of restriction endonucleases or ligase. Fragments from the genes that are to be recombined are generated in separate polymerase chain reactions (PCRs). The primers are designed so that the ends of the products contain complementary sequences. When these PCR products are mixed, denatured, and reannealed, the strands having the matching sequences at their 3' ends overlap and act as primers for each other. Extension of this overlap by DNA polymerase produces a molecule in which the original sequences are 'spliced' together. This technique is used to construct a gene encoding a mosaic fusion protein comprised of parts of two different class-I major histocompatibility genes. This simple and widely applicable approach has significant advantages over standard recombinant DNA techniques.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Molecular Mechanism of Multivesicular Body Biogenesis by ESCRT Complexes

              When internalized receptors and other cargo are destined for lysosomal degradation, they are ubiquitinated and sorted by the ESCRT complexes 0, I, II, and III into multivesicular bodies. Multivesicular bodies are formed when cargo-rich patches of the limiting membrane of endosomes bud inward by an unknown mechanism and are then cleaved to yield cargo-bearing intralumenal vesicles. The biogenesis of multivesicular bodies was reconstituted and visualized using giant unilamellar vesicles, fluorescent ESCRT-0, I, II, and III complexes, and a membrane-tethered fluorescent ubiquitin fusion as a model cargo. ESCRT-0 forms domains of clustered cargo but does not deform membranes. ESCRT-I and II in combination deform the membrane into buds, in which cargo is confined. ESCRT-I and II localize to the bud necks, and recruit ESCRT-0-ubiquitin domains to the buds. ESCRT-III subunits localize to the bud neck and efficiently cleave the buds to form intralumenal vesicles. Intralumenal vesicles produced in this reaction contain the model cargo but are devoid of ESCRTs. The observations explain how the ESCRTs direct membrane budding and scission from the cytoplasmic side of the bud without being consumed in the reaction.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS Pathog
                plos
                plospath
                PLoS Pathogens
                Public Library of Science (San Francisco, USA )
                1553-7366
                1553-7374
                September 2010
                September 2010
                16 September 2010
                : 6
                : 9
                : e1001107
                Affiliations
                [1 ]Program in Gene Function and Expression, Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
                [2 ]Institute for Cellular and Molecular Biology, Section of Molecular Genetics and Microbiology, University of Texas at Austin, Austin, Texas, United States of America
                Northwestern University, United States of America
                Author notes

                Conceived and designed the experiments: HG. Performed the experiments: ERW EP HY. Analyzed the data: ERW HCK JMH HG. Contributed reagents/materials/analysis tools: HCK JMH. Wrote the paper: ERW HG.

                Article
                10-PLPA-RA-3388R2
                10.1371/journal.ppat.1001107
                2940739
                20862313
                e176ca74-339c-45ad-aa30-df3005e86b37
                Weiss et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
                History
                : 20 May 2010
                : 16 August 2010
                Page count
                Pages: 13
                Categories
                Research Article
                Virology/Immunodeficiency Viruses
                Virology/Virion Structure, Assembly, and Egress

                Infectious disease & Microbiology
                Infectious disease & Microbiology

                Comments

                Comment on this article