11
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Role of the captured retroviral envelope syncytin-B gene in the fusion of osteoclast and giant cell precursors and in bone resorption, analyzed ex vivo and in vivo in syncytin-B knockout mice

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Syncytin-A and -B are envelope genes of retroviral origin that have been captured in evolution for a role in placentation. They trigger cell-cell fusion and were shown to be essential for the formation of the syncytiotrophoblast layer during mouse placenta formation. Syncytin-A and -B expression has been described in other tissues and their highly fusogenic properties suggested that they might be involved in the fusion of other cell types. Here, taking advantage of mice knocked out for syncytin-B, SynB −/− mice, we investigated the potential role of syncytin-B in the fusion of cells from the monocyte/macrophage lineage into multinucleated osteoclasts (OCs) -in bone- or multinucleated giant cells -in soft tissues. In ex vivo experiments, a significant reduction in fusion index and in the number of multinucleated OCs and giant cells was observed as soon as Day3 in SynB −/− as compared to wild-type cell cultures. Interestingly, the number of nuclei per multinucleated OC or giant cell remained unchanged. These results, together with the demonstration that syncytin-B expression is maximal in the first 2 days of OC differentiation, argue for syncytin-B playing a role in the fusion of OC and giant cell mononucleated precursors, at initial stages. Finally, ex vivo, the observed reduction in multinucleated OC number had no impact on the expression of OC differentiation markers, and a dentin resorption assay did not evidence any difference in the osteoclastic resorption activity, suggesting that syncytin-B is not required for OC activity. In vivo, syncytin-B was found to be expressed in the periosteum of embryos at embryonic day 16.5, where TRAP-positive cells were observed. Yet, in adults, no significant reduction in OC number or alteration in bone phenotype was observed in SynB −/− mice. In addition, SynB −/− mice did not show any change in the number of foreign body giant cells (FBGCs) that formed in response to implantation of foreign material, as compared to wild-type mice. Altogether the results suggest that in addition to its essential role in placenta formation, syncytin-B plays a role in OCs and macrophage fusion; yet it is not essential in vivo for OC and FBGC formation, or maintenance of bone homeostasis, at least under the conditions tested.

          Highlights

          • Syncytin-A and syncytin-B, captured retroviral envelope genes, are expressed during murine osteoclast differentiation.

          • Syncytin-B is involved in fusion processes driving both osteoclast and giant cell formation.

          • Invalidation of syncytin-B decreases ex vivo fusion indexes of both osteoclast and giant cell precursors.

          • Invalidation of syncytin-B does not impair ex vivo and in vivo osteoclast function.

          • Invalidation of syncytin-B does not impair in vivo FBGC formation

          Related collections

          Most cited references27

          • Record: found
          • Abstract: not found
          • Article: not found

          Bone histomorphometry: standardization of nomenclature, symbols, and units. Report of the ASBMR Histomorphometry Nomenclature Committee.

            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Macrophages, Foreign Body Giant Cells and Their Response to Implantable Biomaterials

            All biomaterials, when implanted in vivo, elicit cellular and tissue responses. These responses include the inflammatory and wound healing responses, foreign body reactions, and fibrous encapsulation of the implanted materials. Macrophages are myeloid immune cells that are tactically situated throughout the tissues, where they ingest and degrade dead cells and foreign materials in addition to orchestrating inflammatory processes. Macrophages and their fused morphologic variants, the multinucleated giant cells, which include the foreign body giant cells (FBGCs) are the dominant early responders to biomaterial implantation and remain at biomaterial-tissue interfaces for the lifetime of the device. An essential aspect of macrophage function in the body is to mediate degradation of bio-resorbable materials including bone through extracellular degradation and phagocytosis. Biomaterial surface properties play a crucial role in modulating the foreign body reaction in the first couple of weeks following implantation. The foreign body reaction may impact biocompatibility of implantation devices and may considerably impact short- and long-term success in tissue engineering and regenerative medicine, necessitating a clear understanding of the foreign body reaction to different implantation materials. The focus of this review article is on the interactions of macrophages and foreign body giant cells with biomaterial surfaces, and the physical, chemical and morphological characteristics of biomaterial surfaces that play a role in regulating the foreign body response. Events in the foreign body response include protein adsorption, adhesion of monocytes/macrophages, fusion to form FBGCs, and the consequent modification of the biomaterial surface. The effect of physico-chemical cues on macrophages is not well known and there is a complex interplay between biomaterial properties and those that result from interactions with the local environment. By having a better understanding of the role of macrophages in the tissue healing processes, especially in events that follow biomaterial implantation, we can design novel biomaterials-based tissue-engineered constructs that elicit a favorable immune response upon implantation and perform for their intended applications.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Paleovirology of 'syncytins', retroviral env genes exapted for a role in placentation.

              The development of the emerging field of 'paleovirology' allows biologists to reconstruct the evolutionary history of fossil endogenous retroviral sequences integrated within the genome of living organisms and has led to the retrieval of conserved, ancient retroviral genes 'exapted' by ancestral hosts to fulfil essential physiological roles, syncytin genes being undoubtedly among the most remarkable examples of such a phenomenon. Indeed, syncytins are 'new' genes encoding proteins derived from the envelope protein of endogenous retroviral elements that have been captured and domesticated on multiple occasions and independently in diverse mammalian species, through a process of convergent evolution. Knockout of syncytin genes in mice provided evidence for their absolute requirement for placenta development and embryo survival, via formation by cell-cell fusion of syncytial cell layers at the fetal-maternal interface. These genes of exogenous origin, acquired 'by chance' and yet still 'necessary' to carry out a basic function in placental mammals, may have been pivotal in the emergence of mammalian ancestors with a placenta from egg-laying animals via the capture of a founding retroviral env gene, subsequently replaced in the diverse mammalian lineages by new env-derived syncytin genes, each providing its host with a positive selective advantage.
                Bookmark

                Author and article information

                Contributors
                Journal
                Bone Rep
                Bone Rep
                Bone Reports
                Elsevier
                2352-1872
                10 July 2019
                December 2019
                10 July 2019
                : 11
                : 100214
                Affiliations
                [a ]BIOSCAR, Unité Mixte de Recherche 1132, Institut National de la Santé et de la Recherche Médicale, Hôpital Lariboisière, Paris 75010, France
                [b ]Laboratoire de Physiopathologie Orale Moléculaire, INSERM U1138, Centre de recherche des Cordeliers, UFR d'Odontologie Garancire, Université Paris Diderot, Paris 75006, France
                [c ]Unité Physiologie et Pathologie Moléculaires des Rétrovirus Endogènes et Infectieux, Unité Mixte de Recherche 9196, Centre National de la Recherche Scientifique, Gustave Roussy, Villejuif, 94805, and Université Paris-Sud, Orsay, 91405, France
                [d ]Inserm, U955, Plateforme d'imagerie, Créteil, 9400, France and Université Paris Est, Faculté de médecine, Créteil, 94000, France
                Author notes
                [* ]Correspondence to: A.E. Coudert, BIOSCAR, Unité Mixte de Recherche 1132, Institut National de la Santé et de la Recherche Médicale, Hôpital Lariboisière, Paris 75010, France. amelie.coudert@ 123456inserm.fr
                [** ]Correspondence to: A. Dupressoir, Unité Physiologie et Pathologie Moléculaires des Rétrovirus Endogènes et Infectieux, Unité Mixte de Recherche 9196, Centre National de la Recherche Scientifique, Gustave Roussy, Villejuif 94805, France. anne.dupressoir@ 123456gustaveroussy.fr
                [1]

                Both authors contributed equally.

                Article
                S2352-1872(19)30020-8 100214
                10.1016/j.bonr.2019.100214
                6637224
                31360740
                e18dd665-a071-4844-8c2f-e90583c11540
                © 2019 The Authors

                This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

                History
                : 3 May 2019
                : 9 July 2019
                Categories
                Article

                endogenous retrovirus,envelope gene,syncytin,cell-cell fusion,osteoclast,giant cell

                Comments

                Comment on this article