6
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Biology and prognostic impact of clonal plasmacytoid dendritic cells in chronic myelomonocytic leukemia

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references38

          • Record: found
          • Abstract: found
          • Article: not found

          Transcription factor E2-2 is an essential and specific regulator of plasmacytoid dendritic cell development.

          Plasmacytoid dendritic cells (PDCs) represent a unique immune cell type specialized in type I interferon (IFN) secretion in response to viral nucleic acids. The molecular control of PDC lineage specification has been poorly understood. We report that basic helix-loop-helix transcription factor (E protein) E2-2/Tcf4 is preferentially expressed in murine and human PDCs. Constitutive or inducible deletion of murine E2-2 blocked the development of PDCs but not of other lineages and abolished IFN response to unmethylated DNA. Moreover, E2-2 haploinsufficiency in mice and in human Pitt-Hopkins syndrome patients was associated with aberrant expression profile and impaired IFN response of the PDC. E2-2 directly activated multiple PDC-enriched genes, including transcription factors involved in PDC development (SpiB, Irf8) and function (Irf7). These results identify E2-2 as a specific transcriptional regulator of the PDC lineage in mice and humans and reveal a key function of E proteins in the innate immune system.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Mapping the human DC lineage through the integration of high-dimensional techniques

            Dendritic cells (DC) are professional antigen-presenting cells that orchestrate immune responses. The human DC population comprises two main functionally specialized lineages, whose origins and differentiation pathways remain incompletely defined. Here, we combine two high-dimensional technologies—single-cell mRNA sequencing and cytometry by time-of-flight (CyTOF), to identify human blood CD123+CD33+CD45RA+ DC precursors (pre-DC). Pre-DC share surface markers with plasmacytoid DC (pDC) but have distinct functional properties that were previously attributed to pDC. Tracing the differentiation of DC from the bone marrow to the peripheral blood revealed that the pre-DC compartment contains distinct lineage-committed subpopulations, including one early uncommitted CD123high pre-DC subset and two CD45RA+CD123low lineage-committed subsets exhibiting functional differences. The discovery of multiple committed pre-DC populations opens promising new avenues for the therapeutic exploitation of DC subset-specific targeting.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              FMS-like tyrosine kinase 3 is required for dendritic cell development in peripheral lymphoid tissues

              Dendritic cell (DC) development begins in the bone marrow but is not completed until after immature progenitors reach their sites of residence in lymphoid organs. The hematopoietic growth factors regulating these processes are poorly understood. Here we examine the effects of FMS-like tyrosine kinase 3 (Flt3) signaling on macrophage DC progenitors (MDP) in the bone marrow and on peripheral DCs. We find that the MDP compartment is responsive to super–physiologic levels of Flt3 ligand (Flt3L) but is not dependent on Flt3 for its homeostatic maintenance in vivo. In contrast, Flt3 is essential in regulation of homeostatic DC development in the spleen where it is required to maintain normal numbers of DCs by controlling their division in the periphery.
                Bookmark

                Author and article information

                Journal
                Leukemia
                Leukemia
                Springer Nature
                0887-6924
                1476-5551
                March 20 2019
                Article
                10.1038/s41375-019-0447-3
                30894665
                e1bce39b-82f4-4207-81c9-e133108d619d
                © 2019
                History

                Comments

                Comment on this article