16
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Galileon gravity in light of ISW, CMB, BAO and H0 data

      , , ,
      Journal of Cosmology and Astroparticle Physics
      IOP Publishing

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references59

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Planck 2013 results. XVI. Cosmological parameters

          We present the first results based on Planck measurements of the CMB temperature and lensing-potential power spectra. The Planck spectra at high multipoles are extremely well described by the standard spatially-flat six-parameter LCDM cosmology. In this model Planck data determine the cosmological parameters to high precision. We find a low value of the Hubble constant, H0=67.3+/-1.2 km/s/Mpc and a high value of the matter density parameter, Omega_m=0.315+/-0.017 (+/-1 sigma errors) in excellent agreement with constraints from baryon acoustic oscillation (BAO) surveys. Including curvature, we find that the Universe is consistent with spatial flatness to percent-level precision using Planck CMB data alone. We present results from an analysis of extensions to the standard cosmology, using astrophysical data sets in addition to Planck and high-resolution CMB data. None of these models are favoured significantly over standard LCDM. The deviation of the scalar spectral index from unity is insensitive to the addition of tensor modes and to changes in the matter content of the Universe. We find a 95% upper limit of r<0.11 on the tensor-to-scalar ratio. There is no evidence for additional neutrino-like relativistic particles. Using BAO and CMB data, we find N_eff=3.30+/-0.27 for the effective number of relativistic degrees of freedom, and an upper limit of 0.23 eV for the summed neutrino mass. Our results are in excellent agreement with big bang nucleosynthesis and the standard value of N_eff=3.046. We find no evidence for dynamical dark energy. Despite the success of the standard LCDM model, this cosmology does not provide a good fit to the CMB power spectrum at low multipoles, as noted previously by the WMAP team. While not of decisive significance, this is an anomaly in an otherwise self-consistent analysis of the Planck temperature data.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            The galileon as a local modification of gravity

            In the DGP model, the ``self-accelerating'' solution is plagued by a ghost instability, which makes the solution untenable. This fact as well as all interesting departures from GR are fully captured by a four-dimensional effective Lagrangian, valid at distances smaller than the present Hubble scale. The 4D effective theory involves a relativistic scalar \pi, universally coupled to matter and with peculiar derivative self-interactions. In this paper, we study the connection between self-acceleration and the presence of ghosts for a quite generic class of theories that modify gravity in the infrared. These theories are defined as those that at distances shorter than cosmological, reduce to a certain generalization of the DGP 4D effective theory. We argue that for infrared modifications of GR locally due to a universally coupled scalar, our generalization is the only one that allows for a robust implementation of the Vainshtein effect--the decoupling of the scalar from matter in gravitationally bound systems--necessary to recover agreement with solar system tests. Our generalization involves an internal ``galilean'' invariance, under which \pi's gradient shifts by a constant. This symmetry constrains the structure of the \pi Lagrangian so much so that in 4D there exist only five terms that can yield sizable non-linearities without introducing ghosts. We show that for such theories in fact there are ``self-accelerating'' deSitter solutions with no ghost-like instabilities. In the presence of compact sources, these solutions can support spherically symmetric, Vainshtein-like non-linear perturbations that are also stable against small fluctuations. [Short version for arxiv]
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              4D Gravity on a Brane in 5D Minkowski Space

              We suggest a mechanism by which four-dimensional Newtonian gravity emerges on a 3-brane in 5D Minkowski space with an infinite size extra dimension. The worldvolume theory gives rise to the correct 4D potential at short distances whereas at large distances the potential is that of a 5D theory. We discuss some phenomenological issues in this framework.
                Bookmark

                Author and article information

                Journal
                Journal of Cosmology and Astroparticle Physics
                J. Cosmol. Astropart. Phys.
                IOP Publishing
                1475-7516
                October 01 2017
                October 17 2017
                : 2017
                : 10
                : 020
                Article
                10.1088/1475-7516/2017/10/020
                e1c0dcf2-ba94-4493-86e4-dcf69de7427a
                © 2017

                http://iopscience.iop.org/info/page/text-and-data-mining

                History

                Comments

                Comment on this article