10
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Redox properties of extracellular polymeric substances (EPS) from electroactive bacteria

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Although the capacity for electroactive bacteria to convert environmental metallic minerals and organic pollutants is well known, the role of the redox properties of microbial extracellular polymeric substances (EPS) in this process is poorly understood. In this work, the redox properties of EPS from two widely present electroactive bacterial strains ( Shewanella oneidensis and Pseudomonas putida) were explored. Electrochemical analysis demonstrates that the EPS extracted from the two strains exhibited redox properties. Spectroelectrochemical and protein electrophoresis analyses indicate that the extracted EPS from S. oneidensis and P. putida contained heme-binding proteins, which were identified as the possible redox components in the EPS. The results of heme-mediated behavior of EPS may provide an insight into the important roles of EPS in electroactive bacteria to maximize their redox capability for biogeochemical cycling, environmental bioremediation and wastewater treatment.

          Related collections

          Most cited references28

          • Record: found
          • Abstract: not found
          • Article: not found

          The EPS matrix: the "house of biofilm cells".

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Conversion of wastes into bioelectricity and chemicals by using microbial electrochemical technologies.

            Waste biomass is a cheap and relatively abundant source of electrons for microbes capable of producing electrical current outside the cell. Rapidly developing microbial electrochemical technologies, such as microbial fuel cells, are part of a diverse platform of future sustainable energy and chemical production technologies. We review the key advances that will enable the use of exoelectrogenic microorganisms to generate biofuels, hydrogen gas, methane, and other valuable inorganic and organic chemicals. Moreover, we examine the key challenges for implementing these systems and compare them to similar renewable energy technologies. Although commercial development is already underway in several different applications, ranging from wastewater treatment to industrial chemical production, further research is needed regarding efficiency, scalability, system lifetimes, and reliability.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Microbial extracellular polymeric substances reduce Ag+ to silver nanoparticles and antagonize bactericidal activity.

              Whereas the antimicrobial mechanisms of silver have been extensively studied and exploited for numerous applications, little is known about the associated bacterial adaptation and defense mechanisms that could hinder disinfection efficacy or mitigate unintended impacts to microbial ecosystem services associated with silver release to the environment. Here, we demonstrate that extracellular polymeric substances (EPS) produced by bacteria constitute a permeability barrier with reducing constituents that mitigate the antibacterial activity of silver ions (Ag(+)). Specifically, manipulation of EPS in Escherichia coli suspensions (e.g., removal of EPS attached to cells by sonication/centrifugation or addition of EPS at 200 mg L(-1)) demonstrated its critical role in hindering intracellular silver penetration and enhancing cell growth in the presence of Ag(+) (up to 0.19 mg L(-1)). High-resolution transmission electron microscopy (HRTEM) combined with X-ray photoelectron spectroscopy (XPS) and energy-dispersive spectrometry (EDS) analyses showed that Ag(+) was reduced to silver nanoparticles (AgNPs; 10-30 nm in diameter) that were immobilized within the EPS matrix. Fourier transform infrared (FTIR) and (13)C nuclear magnetic resonance (NMR) spectra suggest that Ag(+) reduction to AgNPs by the hemiacetal groups of sugars in EPS contributed to immobilization. Accordingly, the amount and composition of EPS produced have important implications on the bactericidal efficacy and potential environmental impacts of Ag(+).
                Bookmark

                Author and article information

                Journal
                Sci Rep
                Sci Rep
                Scientific Reports
                Nature Publishing Group
                2045-2322
                19 December 2016
                2016
                : 6
                : 39098
                Affiliations
                [1 ]CAS Key Laboratory of Urban Pollutant Conversion, Department of Chemistry, University of Science and Technology of China , Hefei, 230026, China
                Author notes
                Article
                srep39098
                10.1038/srep39098
                5171820
                27991531
                e1c4327d-36ab-4dd9-a6f7-cd5632bc344a
                Copyright © 2016, The Author(s)

                This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

                History
                : 15 July 2016
                : 17 November 2016
                Categories
                Article

                Uncategorized
                Uncategorized

                Comments

                Comment on this article