Inviting an author to review:
Find an author and click ‘Invite to review selected article’ near their name.
Search for authorsSearch for similar articles
1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      A transient brain endothelial translatome response to endotoxin is associated with mild cognitive changes post-shock in young mice

      Preprint
      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Sepsis-associated encephalopathy (SAE) is a common manifestation in septic patients that is associated with increased risk of long-term cognitive impairment. SAE is driven, at least in part, by brain endothelial dysfunction in response to systemic cytokine signaling. However, the mechanisms driving SAE and its consequences remain largely unknown. Here, we performed translating ribosome affinity purification (TRAP) and RNA-sequencing (TRAP-seq) from the brain endothelium to determine the transcriptional changes after an acute endotoxemic (LPS) challenge. We found that LPS induces a strong acute transcriptional response in the brain endothelium that partially correlates with the whole brain transcriptional response and suggested an endothelial-specific hypoxia response. Consistent with a critical role for the IL-6 pathway, loss of the main regulator of this pathway, SOCS3, leads to a broadening of the population of genes responsive to LPS, suggesting that an overactivation of the IL-6/JAK/STAT3 pathway leads to an increased transcriptional response that could explain our prior findings of severe brain injury in these mice. To identify any potential sequelae of this acute response, we performed brain TRAP-seq following a battery of behavioral tests in mice after apparent recovery. We found that the transcriptional response returns to baseline within days post-challenge. Despite the transient nature of the response, we observed that mice that recovered from the endotoxemic shock showed mild, sex-dependent cognitive impairment, suggesting that the acute brain injury led to sustained, non-transcriptional effects. A better understanding of the transcriptional and non-transcriptional changes in response to shock is needed in order to prevent and/or revert the devastating consequences of septic shock.

          Related collections

          Most cited references52

          • Record: found
          • Abstract: found
          • Article: not found

          The blood-brain barrier.

          Blood vessels are critical to deliver oxygen and nutrients to all of the tissues and organs throughout the body. The blood vessels that vascularize the central nervous system (CNS) possess unique properties, termed the blood-brain barrier, which allow these vessels to tightly regulate the movement of ions, molecules, and cells between the blood and the brain. This precise control of CNS homeostasis allows for proper neuronal function and also protects the neural tissue from toxins and pathogens, and alterations of these barrier properties are an important component of pathology and progression of different neurological diseases. The physiological barrier is coordinated by a series of physical, transport, and metabolic properties possessed by the endothelial cells (ECs) that form the walls of the blood vessels, and these properties are regulated by interactions with different vascular, immune, and neural cells. Understanding how these different cell populations interact to regulate the barrier properties is essential for understanding how the brain functions during health and disease.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Blood-Brain Barrier: From Physiology to Disease and Back

            The blood-brain barrier (BBB) prevents neurotoxic plasma components, blood cells, and pathogens from entering the brain. At the same time, the BBB regulates transport of molecules into and out of the central nervous system (CNS), which maintains tightly controlled chemical composition of the neuronal milieu that is required for proper neuronal functioning. In this review, we first examine molecular and cellular mechanisms underlying the establishment of the BBB. Then, we focus on BBB transport physiology, endothelial and pericyte transporters, and perivascular and paravascular transport. Next, we discuss rare human monogenic neurological disorders with the primary genetic defect in BBB-associated cells demonstrating the link between BBB breakdown and neurodegeneration. Then, we review the effects of genes underlying inheritance and/or increased susceptibility for Alzheimer’s disease (AD), Parkinson’s disease (PD), Huntington’s disease, and amyotrophic lateral sclerosis (ALS) on BBB in relation to other pathologies and neurological deficits. We next examine how BBB dysfunction relates to neurological deficits and other pathologies in the majority of sporadic AD, PD, and ALS cases, multiple sclerosis, other neurodegenerative disorders, and acute CNS disorders such as stroke, traumatic brain injury, spinal cord injury, and epilepsy. Lastly, we discuss BBB-based therapeutic opportunities. We conclude with lessons learned and future directions, with emphasis on technological advances to investigate the BBB functions in the living human brain, and at the molecular and cellular level, and address key unanswered questions.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Into the eye of the cytokine storm.

              The cytokine storm has captured the attention of the public and the scientific community alike, and while the general notion of an excessive or uncontrolled release of proinflammatory cytokines is well known, the concept of a cytokine storm and the biological consequences of cytokine overproduction are not clearly defined. Cytokine storms are associated with a wide variety of infectious and noninfectious diseases. The term was popularized largely in the context of avian H5N1 influenza virus infection, bringing the term into popular media. In this review, we focus on the cytokine storm in the context of virus infection, and we highlight how high-throughput genomic methods are revealing the importance of the kinetics of cytokine gene expression and the remarkable degree of redundancy and overlap in cytokine signaling. We also address evidence for and against the role of the cytokine storm in the pathology of clinical and infectious disease and discuss why it has been so difficult to use knowledge of the cytokine storm and immunomodulatory therapies to improve the clinical outcomes for patients with severe acute infections.
                Bookmark

                Author and article information

                Journal
                bioRxiv
                BIORXIV
                bioRxiv
                Cold Spring Harbor Laboratory
                06 March 2024
                : 2024.03.03.583191
                Affiliations
                [1 ]Department of Molecular and Cellular Physiology, Albany Medical College.
                [2 ]Department of Neuroscience & Experimental Therapeutics, Albany Medical College.
                [3 ]Department of Ophthalmology, Albany Medical College.
                Author notes
                [4 ]To whom correspondence should be addressed at 43 New Scotland Ave, Albany, NY 12208. Adama1@ 123456amc.edu
                Author information
                http://orcid.org/0000-0003-2142-2192
                http://orcid.org/0000-0001-8536-2606
                http://orcid.org/0000-0003-2886-1307
                http://orcid.org/0000-0002-5395-7362
                http://orcid.org/0000-0001-6285-7235
                Article
                10.1101/2024.03.03.583191
                10942387
                38496442
                e206d562-65a5-4bc8-9dd5-e2d41a4f6ae2

                This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License, which allows reusers to copy and distribute the material in any medium or format in unadapted form only, and only so long as attribution is given to the creator. The license allows for commercial use.

                History
                Categories
                Article

                Comments

                Comment on this article